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A method is presented to constrain a statistical model of sub-gridcolumn moisture
variability using high-resolution satellite cloud data. The method can be used for large-
scale model parameter estimation or cloud data assimilation. The gridcolumn model
includes assumed probability density function (PDF) intra-layer horizontal variability
and a copula-based inter-layer correlation model. The observables used in the current
study are Moderate Resolution Imaging Spectroradiometer (MODIS) cloud-top pressure,
brightness temperature and cloud optical thickness, but the method should be extensible
to direct cloudy radiance assimilation for a small number of channels. The algorithm
is a form of Bayesian inference with a Markov chain Monte Carlo (MCMC) approach
to characterizing the posterior distribution. This approach is especially useful in cases
where the background state is clear but cloudy observations exist. In traditional linearized
data assimilation methods, a subsaturated background cannot produce clouds via any
infinitesimal equilibrium perturbation, but the Monte Carlo approach is not gradient-
based and allows jumps into regions of non-zero cloud probability. The current study uses
a skewed-triangle distribution for layer moisture. The article also includes a discussion of
the Metropolis and multiple-try Metropolis versions of MCMC.
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1. Introduction

This article addresses the topic of cloud data assimilation (CDA)
into global circulation models (GCMs). CDA presents many
challenges, including the following.

(1) Cloud properties and the underlying moisture field for
which they are partial markers often have very significant
variability on scales smaller than typical GCM gridbox
sizes.

(2) Cloud-affected observables vary nonlinearly with gridcol-
umn profiles of temperature and moisture. In particular,
no infinitesimal equilibrium perturbation to moisture for
a subsaturated background state can produce cloudiness.
This makes dealing with cloudy observations and a clear
background an especially difficult problem.

(3) The forward modelling of cloud-affected radiances is
complicated and computationally expensive.

(4) Due to the complexity of cloud macro- and microphysical
processes and their coupling with convection, turbulence
and radiative transfer, the generation of a good background
cloud state is itself a very difficult task. This makes attempts

at cloud data assimilation from this background state all
the more difficult, since most data assimilation methods
work best when the background is close to the observed
state. In particular, small errors in synoptic system location
are much more serious for cloud data assimilation than
for the variational constraint of smoother fields such as
temperature.

(5) Clouds are directly coupled to the flow field and
thermodynamic state and assimilation of cloud data
therefore requires building the full state that supports them.

Because of these and other difficulties, much of the available
cloud-affected satellite data are currently discarded. These dis-
carded observations comprise a significant fraction of all satellite
data. This is a major problem, because cloud-affected radiances
carry very important information about the underlying moisture
field and ignoring this information potentially introduces a
significant bias into the moisture analysis.

Our intention in this article is not to attack the entire CDA
problem, but to explore a non-traditional Monte Carlo Bayesian
approach to cloud analysis – to improving the background
moisture state and its subgrid-scale variability, so that it is
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much more compatible with the cloud observations provided.
Such an approach is designed to be a type of ‘cloud relocator’ or
‘cloud bias-corrector’, able to provide more traditional variational
cloud data assimilation methods (see Bauer et al., 2011) with a
background state that yields forward-modelled cloudy radiances
with much smaller biases with respect to the observations.

Bauer et al. (2011) review current efforts under way at global
numerical weather prediction (NWP) centres to assimilate cloud
and precipitation data. These efforts largely involve variational
(3D- or 4D-Var) assimilation of cloud-affected radiances (or
cloud property retrievals). Some centres, such as the UK Met
Office and Météo-France, include a 1D-Var cloud preprocessing
step – to facilitate quality control, to produce a cloud-observation-
consistent pseudo-relative-humidity for assimilation by the full
CDA system or to constrain unknown cloud-related parameters of
the system, which are subsequently held fixed in the next forecast
cycle. The authors’ earlier work (Norris and da Silva, 2007) was
of this nature, using International Satellite Cloud Climatology
Project (ISSCP) and Special Sensor Microwave Imager (SSM/I)
cloud-property retrievals to constrain the empirical parameters
of a simple GCM cloud parametrization. The approach presented
here has similarities with these 1D-Var approaches, but with the
following significant differences.

(1) The approach is fully Bayesian, seeking to characterize the
a posteriori probability density function (PDF) of control
parameters. In particular, the approach makes no assump-
tions of Gaussianity, which are potentially dangerous in
treating the often skewed moisture distributions found in
nature, e.g. in the marine boundary layer.

(2) The approach is fully nonlinear and makes no use
of gradient or adjoint information. In particular, the
Monte Carlo optimization method can jump out of zero-
sensitivity regions, such as subsaturated gridcolumns in the
presence of cloud observations.

(3) The approach makes use of a detailed sub-gridcolumn
statistical model, including horizontal moisture variability
within each gridbox and its vertical coupling between
layers. In particular, cloud-affected observations within
the gridcolumn footprint are used to constrain second
and third statistical moments within the gridcolumn,
not just mean properties. This partly mitigates the
representativeness errors associated with the typical
mismatch between satellite pixel footprints and the
gridcolumn footprint.

The multivariate aspect of coupling clouds to the dynamic and
thermodynamic state (item (5) earlier) deserves much attention in
a fully cycled cloud data assimilation system, but is not considered
in this article. Coupling of our Monte Carlo Bayesian algorithm to
the ensemble/variational schemes currently implemented in the
National Aeronautics and Space Administration (NASA) Global
Modeling and Assimilation Office (GMAO) Goddard Earth
Observing System Model Version 5 (GEOS-5) data assimilation
system is beyond the scope of this article.

This article is Part 1 of a two-part series. In section 2, a detailed
description of our method is presented, since a number of aspects
of the method are non-traditional in the CDA field and therefore
warrant careful explanation. Then, in section 3, an application of
the method to some simple single-layer case studies is illustrated
and analyzed.

In the sequel, Part 2, the method is applied in a realistic multi-
layer setting and its performance in a number of case studies and
sensitivity tests is discussed.

2. Description of method

2.1. Overview

This article presents a type of Bayesian parameter estimation,
somewhat akin to 1D-Var approaches, in which the fundamental

unit of estimation is a single GCM-gridcolumn. However, unlike
1D-Var, the gridcolumn is not simply a profile of layer-mean
state variables, but a more comprehensive statistical model
designed to capture more realistic subgrid-scale horizontal and
vertical variability within the gridcolumn. This model includes
a PDF of subgrid total moisture for each layer and a suitable
coupling of those PDFs in the vertical, e.g. using a Gaussian
copula, as in Norris et al. (2008).

Let α be a control vector of the parameters that describe
the gridcolumn model: α should include a set of parameters
specifying each layer’s moisture PDF (not just its mean) and may
also include the vertical coupling between the layer PDFs, e.g. via
one or more vertical decorrelation length-scales associated with
inter-layer correlation.

We have some assumed prior knowledge of α given by a
prior PDF p(α), and we wish to explore how this knowledge is
modified by a vector of observations of the gridcolumn, y. In
other words, we wish to estimate the posterior PDF p(α|y). In
our case, y contains cloud retrievals for satellite instrument fields
of view (FOVs) falling within the gridcolumn, e.g. cloud-top
temperature and cloud optical thickness. There are usually many
such FOVs within the gridcolumn footprint, so these observations
should contain information useful for constraining not only the
gridcolumn mean state but also its internal spatial variability.

According to Bayes’ Theorem,

p(α|y) ∝ p(y|α) p(α), (1)

with the constant of proportionality 1/p(y) being dependent only
on the observations. The first term on the right, p(y|α), is called
the likelihood, the probability of observing y given a parameter
state α. There are usually a large multiplicity of parameter states
α that have some likelihood of yielding the observations. Our
goal is to explore p(α|y) to quantify both its mode(s), which
specifies the most probable α given the observations, as well as
some measure of its spread, which indicates the magnitude of the
error associated with the modal α estimate.

For reasons to be discussed below, we will use a type of Markov
chain Monte Carlo (MCMC) method to characterize p(α|y). This
method makes quasi-random jumps around parameter space,
such that, as the number of jumps becomes large, the collection of
sampled α is consistent with samples drawn from the target PDF
p(α|y). (Note that, while sampling α space, the proportionality
term p(y) is invariant and need not be included.)

The above approach has a number of benefits, at least some of
them specific to highly nonlinear problems such as CDA.

(1) It is not based on gradient or tangent-linear sensitivity, but
instead makes exploratory jumps in parameter space. This
potentially allows the method to jump out of regions of zero
likelihood, such as when cloudy observations fall within a
wholly subsaturated gridcolumn. It also allows sampling
away from local but non-global probability maxima, with
the potential to find the global maximum. Of course, non-
gradient methods come with an increased computational
cost, which is often a very important concern.

(2) Most common variational approaches assume Gaussian
likelihood and prior models and are therefore expressed in
terms of least-squares cost functions. While some type of
transformation to a Gaussian likelihood may be possible,
the Bayesian approach above does not require this and so
is somewhat more flexible.

(3) The MCMC approach characterizes the posterior PDF in
general, not just the mode. Again, this comes at a cost,
but the advantage is that robust error estimates of the
parameters are available from the method.

(4) The MCMC approach implicitly produces a set of samples
of parameter space consistent with the a posteriori
parameter PDF. This set can potentially be used to produce
a sampling of the new prior for the next analysis time via
an ensemble forecast in α.
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(5) In general, there will be many different candidate statistical
models for the gridcolumn: for example with different
forms for the layer moisture PDFs or the inter-layer
correlation (or ‘cloud overlap’). Conveniently, the Bayesian
context can be used to decide which model is more
consistent with the observations. For a model M with
parameters α, the probability of the observations is
p(y|M) = ∫

p(y|M, α) p(α) dα and can be approximated
as the average of the likelihood term sampled over the
prior distribution of α. This can easily be compared with
p(y|M′) of an alternate model M′ in α′ to decide which
model is better. (The prior samplings at a particular time
can readily be supplied from the a posteriori sampling at
the previous analysis, as in (4) above.)

As noted already, the above set of benefits come with an
additional computational cost and a cost-benefit analysis may
not always favour the chosen approach for a given problem. If
only a maximum a posteriori estimate is required (i.e. the mode
of p(α|y)), not a full characterization of p(α|y), then techniques
such as simulated annealing (see e.g. Andrieu et al., 2003) may
offer significant time savings. Nevertheless, the computational
throughput for the MCMC-based CDA system described here is
quite manageable. Actual timings are given in Appendix B2.

2.2. Gridcolumn statistical model

The ‘gridcolumn statistical model’ (GCSM) encapsulates and
parametrizes the horizontal moisture variability within each layer
of a GCM-gridcolumn and its vertical correlation between layers.
We employ this GCSM construct as the fundamental unit of our
analysis, because there is well-known and significant variability in
moisture/cloud fields at scales below the typical GCM grid-scale
and because high-resolution satellite cloud observations have the
potential to help constrain this variability.

Much of the background for the GCSM comes from Norris
et al. (2008, hereafter N08). The moisture variable we use is
the total saturation ratio, S ≡ qt/qs(T), the ratio of the in situ
total moisture content (vapour plus cloud condensate) to the
saturation vapour content at the in situ temperature T. We model
the intra-layer variability in S, but neglect any explicit intra-
layer temperature variability, using the layer mean temperature
T̄ whenever an explicit temperature is required. N08 provide a
solid justification for this approach.

The first key component of the GCSM is the PDF pSk (S)
of moisture variability for each layer k of the gridcolumn. For
sufficiently thin layers, this quantifies the intra-layer horizontal
variability of Sk. In general, each layer can have its own unique
form for pSk . In practice, it is simpler to pick a common parametric
form pS(S; νk), where νk is the layer parameter vector, fixed in
dimension but varying in value between layers. This is acceptable
so long as the form is general enough to encompass realistic
variability at different heights in the atmosphere, at different
latitudes and under different synoptic conditions. This argues for
flexibility to control at least the mean, variance and skewness of
the PDF, or at least three parameters per layer.

N08 use a generalized extreme value (GEV) distribution for
pS. In the current article, we use a simpler skewed triangle
distribution, denoted p�[S; ν ≡ (SL, S∗, SH)] and illustrated in
Figure 1. This PDF is non-zero on (SL, SH), rising linearly from
zero at SL to a mode at S∗ and then falling linearly to zero again
at SH. As such, it is a simple three-parameter bounded PDF that
retains skewness. We prefer this ability to represent skewness
because of the ubiquity of skewed moisture PDFs in the boundary
layer and in convective regimes. A bounded PDF is convenient to
avoid unphysical negative S values or unrealistically large S values
(see sections 2.3.1 and 2.8). Appendix A has a fuller description
of the properties of p�.

The second key component of the GCSM is the coupling
or correlation of moisture PDFs among the layers. This is a
generalization of the familiar ‘cloud overlap’ concept to the
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Figure 1. Example of (a) a skewed triangle PDF in S and (b) its CDF. The PDF
has width � ≡ SH − SL. The fraction of probability to the left of the mode is
PL = (S∗ − SL)/�. The shaded area of the PDF is the cloud fraction f = 1 − f ′
(under the bulk assumption). See Appendix A for further details.

vertical correlation of the layer moisture PDFs themselves, not
just the cloud occurrence. In the current article, the vertical
stack of triangular PDFs is coupled using a Gaussian copula, as
described in N08.

Formally speaking, the copula of a set a random variables is
the joint cumulative distribution function (CDF) of the ranks of
the variables within their respective univariate margins. In our
context, it is a means of producing a full multi-layer distribution of
S with the specified layer marginal PDFs pSk . As in N08, we model
the copula of S with the well-known and convenient Gaussian
copula, parametrized by an inter-layer correlation matrix C.
The resultant multi-layer S distribution is not Gaussian, but
it does collapse to a multivariate Gaussian with correlation C
if the layer marginals are themselves Gaussian. N08 provides
solid justification for the use a Gaussian copula, demonstrating
its ability to model complex sub-GCM-gridcolumn cloud fields
while retaining the convenience of parametric marginal PDFs.

It is a simple matter to generate random samples from the
Gaussian copula/triangular margin combination presented above
(see N08 and Appendix A1). We call this subcolumn generation,
in the sense that each such random sample is a vector of layer
S values that can be used to specify a full vertical profile (or
‘subcolumn’) of vapour content, cloudiness and condensate at
a random horizontal location within the gridcolumn footprint.
The generation of an ensemble of such subcolumns permits
Monte Carlo integration over the subgrid-scale variability within
a GCM-gridcolumn. This approach is basically necessary due
to the intractability/computational expense of analytical/other
numerical gridcolumn averages, for all but the most simple
forward operators. A similar approach is used by the McICA
radiative transfer calculations of Pincus et al. (2003).

We make the so-called bulk assumption, namely that the
condensate amount is the total water in excess of saturation. Then
layer k of a subcolumn is either cloudy for Sk > 1 or clear for
Sk ≤ 1 and the total, vapour and condensate contents are given by

qtk = Sk qsk,
qvk = min(Sk, 1) qsk,
qck = qtk − qvk = max(Sk − 1, 0) qsk,

(2)
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respectively (where qsk = qs(T̄k) is used, as explained earlier).
The bulk assumption, together with the phase split details
discussed later, provides a simple framework for the investigation
of subgrid-scale moisture variability in terms of total (vapour
+ condensate) moisture content (although it is admittedly
simplistic for mixed-phase and ice clouds, as we will discuss later
and hope to improve upon in future work.)

The above subcolumn generation strategy is a type of inde-
pendent column approximation (ICA) subcolumn generation, in
the sense that our GCSM does not contain any specification of
horizontal correlation, just horizontal PDFs of S coupled only
in the vertical. Wind et al. (2013) provide a treatment of hori-
zontal spatial coherence for subcolumn generation that becomes
essential in the context of cloud retrieval simulations. However,
inclusion of horizontal coherence is a computationally expensive
proposition that is inconsistent with the ICA approach adopted
in the GEOS-5 GCM and is therefore not considered in this study.

To complete the specification of the GCSM, the correlation
matrix C must be specified. This is somewhat akin to the choice of
cloud overlap parametrization, but more general, since it actually
specifies the full relationship between S values (clear or cloudy)
at different heights. Currently we assume a single decorrelation
‘length’-scale of L = 100 hPa and use the well-known second-
order autoregressive (SOAR) correlation function (e.g. Daley,
1991, p117):

Ckk′ = (1 + ξkk′) exp(−ξkk′), ξkk′ = |pk − pk′ |/L, (3)

where pk and pk′ are the midpoint pressures of arbitrary layers
within the gridcolumn. Many other correlation functions could
be used, including ones that use more than one length-scale,
as in Gaspari et al. (2006). The value L = 100 hPa was chosen,
somewhat arbitrarily, to be approximately consistent with a
1 km low-level correlation length. This value is a reasonable
global average estimate for the length-scale associated with the
correlation of ranks of total condensate amount (see figure 3 of
Oreopoulos and Norris, 2011), whereas our L is the length-scale
associated with the correlation of ranks of total water (vapour +
condensate) amount. Nevertheless, the two will be very similar for
correlations between overcast cloud layers, where the vapour is
saturated. The reader is referred to Part 2 (Table 3 and associated
text) for discussion of the sensitivity to L and additional ways
to specify L or infer it statistically, or to modify this constant
default length-scale effectively in the presence of decorrelating
atmospheric features, such as the buoyancy-inhibiting tempera-
ture inversions capping planetary boundary-layer clouds. A fuller
study of the specification of C and L is planned.

Finally, note that the above GCSM is simply the one we have
chosen for the preliminary evaluation of our CDA system. Many
details can be altered in future studies. These include the form of
the layer PDFs, the specification of C, for example using multiple
length-scales, and whether to use the Gaussian copula or some
other sort of cloud/condensate overlap model. One advantage of
our CDA system is the ease with which such changes can be made,
because of the abstraction of the subcolumn generator from other
parts of the CDA system.

2.3. Control vector and prior

The control vector α of the Bayesian inference (1) must include
whatever parameters of the GCSM are allowed to vary in response
to observations. Currently, α is comprised of the PDF parameters
νk for each layer, hence allowing the observations to constrain the
mean, variance and skewness of the layer moisture distributions.
We do not include the gridbox mean temperature T̄ profile,
but hold it fixed during the CDA process. There is nothing
in the algorithm that prevents the inclusion of T̄, but because
temperature is perhaps the best constrained parameter by the
current meteorological observing system, we have decided in
the current study to focus on correcting errors in the moisture

field. Likewise, we do not include the currently fixed vertical
decorrelation scale L, although this is very possible and will be
tried in future studies.

To proceed, we first need to specify the prior p(α) at the time ta

of the analysis (i.e. inference). In a cycling CDA system, this prior
should somehow be generated from a knowledge of the posterior
PDF p(α|y) at the previous analysis time and an idea of how to
evolve the control vector α in time. Since the time evolution
of the moisture field is nonlinear, especially in the presence of
cloud processes, the most thorough approach would be to draw
a sufficiently large ensemble of α samples from the previous
posterior, evolve each sample forward in time with a prognostic
PDF cloud parametrization, for example, following the lead of
Tompkins (2002), and then form the prior at the new time from
the ensemble of evolved α samples.

In the current article and its sequel, Part 2, we step back from
this thorough approach in several major ways.

(1) Firstly, we do not currently have a cloud parametrization
that can prognosticate the α control vector (i.e. the
moisture PDFs) directly within the GEOS-5 GCM. Instead,
we can potentially evolve α implicitly by using the
current GEOS-5 parametrizations, which prognosticate
the gridbox mean vapour and condensate and the gridbox
cloud fraction and then transform backwards and forwards
to the PDF parameter space νk. Transformation from the
GEOS-5 mean state to α space is covered in section 2.3.1.
The reverse transformation is simple to obtain from
Appendix A.

(2) Secondly, we do not currently use an ensemble forecast
of α from the previous posterior PDF p(α|y) to form the
new prior at ta. This is not because it cannot be done, nor
fundamentally because of limitation (1) above, but because
we have not currently integrated our CDA work with
recent ensemble forecast advances at the GMAO. Currently,
instead of the ensemble approach, we simply approximate
the ‘location’ of the new prior by a transformation to α
space of the mean GEOS-5 gridcolumn state at ta and use
assumptions to specify its form (i.e. higher moments). We
will be more precise in sections 2.3.1–2.3.3 below.

(3) Finally, currently we do not perform a cycling analysis at
all, but rather a series of three-hourly cloud analyses that
are ‘independent’ of each other in the following sense:
the prior at each analysis time is derived not from the
previous CDA posterior but from the state at ta of a
so-called background forecast run of the GEOS-5 model
within the regular GMAO meteorological analysis cycle,
which currently has no CDA input. This ‘background’ for
our cloud analyses is thus not affected by the CDA at all,
but is simply the source of the mean gridcolumn states
used to produced the prior and initial condition for each
cloud analysis. Details are covered in sections 2.3.1 and 2.4
below. The current non-cycling system is simply the scope
of this article and its sequel, which focus on the cloud
analyses, not a fundamental limitation imposed by (1) or
(2) above. Future work will study a cycling CDA system
with and without limitations (1) and (2).

2.3.1. The background α state

A background run of the GMAO GEOS-5 GCM within its regular
meteorological analysis cycle provides forecasts of the mean
vapour and condensate contents, q̄v and q̄c, in each gridbox,
together with the cloud fraction f . Ideally, the GCM would provide
estimates of the background α (i.e. PDF parameters) directly,
through a prognostic triangular PDF cloud parametrization.
However, until such a prognostic PDF cloud parametrization
is available in GEOS-5, a method is required to convert from
(q̄v, q̄c, f ) to the triangular PDF parameters ν = (SL, S∗, SH). This
method is described below. The collection of these νk for each
layer is called the ‘background’ control vector α and is used by
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the CDA system in two ways: (i) to locate the prior in α space,
as described in section 2.3.3, and (ii) as the initial condition for
sampling of the posterior p(α|y), i.e. as the first element of the
MCMC chain (section 2.7).

In general, one would expect that three constraints (q̄v, q̄c, f )
would be sufficient to solve for a unique triangle PDF specified by
three parameters (SL, S∗, SH). It turns out that the situation is far
more complex. Before examining this in detail, we switch from
(SL, S∗, SH) to an equivalent but more convenient specification
of the triangle PDF using (S̄, �, PL), where � ≡ SH − SL > 0
is the base of the triangle, PL = (S∗ − SL)/� is the fraction
of probability to the left of the mode and S̄ is the mean (see
Appendix A, sections A1 and A2).

There are three cases to consider. Firstly, if q̄c is zero, this is
taken as sufficient evidence of a clear gridbox, regardless of f ,
which is considered to be less reliable. In this case, the entire
total water triangular PDF must fall below saturation (S = 1).
Specifically, we seek a triangle that falls wholly within S ∈ [0, 1]
and for which the mean S̄ is equal to the specified q̄v/qs(T̄) < 1.
These conditions are not sufficient to determine a unique skewed
triangle PDF. Instead we impose a symmetric triangle (PL = 0.5)
centred on S̄ with a nominal width �0 = 0.4. If this triangle does
not fit wholly within S ∈ [0, 1], we make adjustments to it, as
detailed in section A5.

Secondly, if q̄v = qs, this is taken as sufficient evidence of an
overcast gridbox, regardless of f , which again is considered less
reliable. [Note that this precise equality exists because, under the
bulk assumption, any water in excess of saturation is condensate.
Therefore qv is everywhere ≤ qs and so the gridbox mean q̄v can
only be equal to qs if the gridbox is entirely saturated. When pre-
processing the GEOS-5 background state, any value of q̄v in excess
of qs is clipped to qs.] In this overcast case, the entire total water
triangular PDF must fall above saturation (S = 1). Specifically, we
seek a triangle that falls wholly within S ∈ [1, Smax], where Smax

is some reasonable upper bound on allowable total saturation
ratio S (see section 2.8) and for which the mean S̄ is equal to
the specified q̄t/qs = 1 + q̄c/qs > 1. These conditions are not
sufficient to determine a unique skewed triangle PDF. Instead we
again impose a symmetric triangle (PL = 0.5) centred on S̄ with a
nominal width �0 = 0.4. If this triangle does not fit wholly within
S ∈ [1, Smax], we make adjustments to it, as detailed in section
A5. Note that the use of an upper bound in total saturation ratio
Smax is necessary to avoid unphysically large values of condensate
qc that may sometimes occur during the minimization. The bulk
condensate assumption (2) simply does not contain the necessary
precipitation microphysics to self-limit excessive qc values. The
specification of Smax is discussed in section 2.8.

Finally, in all other cases, the gridbox is partially cloudy and we
diagnose a skewed triangle PDF that straddles over the saturation
point (S = 1) from (q̄v, q̄c, f ), as detailed in Appendix A4. This
turns out to be a non-trivial procedure, because a valid triangular
solution is only available for a relatively narrow range of f values
given q̄v and q̄c. An f outside this range suggests that the underlying
background PDF is not well approximated by a triangle. In that
case, f is adjusted to provide a reasonable triangular background
PDF (see section A4). In all cases, whether clear, overcast or
partially cloudy, the mean S̄ from the GEOS-5 background state
is always preserved by the derived background-state triangle PDF.

2.3.2. Choice of control parameters

Each GCM layer below a nominal tropopause has a triangular
PDF in total saturation ratio S. (PDFs could also have been
specified above the tropopause, but this was not done to save
on computational expense, since clouds generally do not occur
there.) As per the previous section, reasonable control parameters
are (S̄, �, PL), which are, respectively, the mean, the base of
the triangle (representing PDF spread) and a non-dimensional
skewness parameter PL ∈ (0, 1). S̄ is allowed to vary in the interval
(0, Smax), where Smax is a maximum S in the range 1.1–1.4,

depending on the assumed phase, as discussed in section 2.8. PL

is the fraction of probability to the left of the mode. In practice,
we constrain PL to a reduced range 0.1–0.9, representing extreme
positive and negative skewnesses, respectively.

We do not use the raw base width � = SH − SL, but a scaled
version, β ≡ �/�max, as a control parameter. Here �max is the
maximum possible base width that avoids the triangle end-points
crossing out of physical/reasonable bounds, namely either SL < 0
or SH > Smax, and is given by

�max = 3 min

(
S̄

1 + PL
,

Smax − S̄

1 + PH

)
. (4)

Use of β rather than � provides a control parameter that is
normalized on the invariant range [0, 1], which is convenient for
our algorithm and also provides a control variable with a smaller
dynamic range, since � itself can become very small in the dry
upper atmosphere.

So, with this modification, the collection of control parameters
(S̄, β, PL) for all layers in a gridcolumn (below the nominal
tropopause) makes up the control vector α used in our Bayesian
estimation.

2.3.3. Prior PDFs

In the absence of prior knowledge to the contrary, we currently
assume the prior PDFs of β and PL to be independent uniform
distributions on [0, 1] and [0.1, 0.9], respectively, for each
tropospheric layer. We therefore impose no preferred values
or prior correlations between layers for these variables. Clearly,
in a future cycling CDA system, there is the potential of using
posteriori knowledge of these variables from the previous CDA
analysis to inform the prior for the current analysis, as discussed
above in the introductory remarks of section 2.3.

For S̄, we use a multivariate Gaussian prior centred on the vector
of background tropospheric layer means and with covariance
matrix

�kk′ = σ 2
S̄

rk rk′ Ckk′ , (5)

where σS̄ = 0.1 is a nominal standard deviation for S̄ and
Ckk′ is the inter-layer correlation matrix of (3). The factor
rk ≡ (pk − plim)/(pramp − plim), restricted to [0, 1], acts to ramp
the standard deviations linearly to zero over a small pressure
interval near the tropopause. Currently, plim = 50 hPa and
pramp = 100 hPa.

The use of a Gaussian prior for S̄ has some justification in the
work of Dee and da Silva (2003), who find that relative humidity
is a preferred and more Gaussian moisture control variable than
specific humidity. However, in some sense, we are also simply
following the common practice of assuming a Gaussian as a first
step in algorithm development. The constant value of σS̄ = 0.1
is also somewhat arbitrary and motivated by the fact that typical
S̄ values are in the range [0, Smax] ≈ [0, 1]. We also assume no
prior correlation between S̄ and either of β or PL.

Clearly the implications of these assumptions need to be
investigated thoroughly. At this stage, we have specified the
simplest prior PDF for the parameters and focused on other
aspects of the MCMC algorithm. In the future, the prior will take
on a form of its own based on ensemble evolution of the posterior
in a cycling system, as discussed earlier in section 2.3.

2.4. Observations

Our CDA method produces an analyzed model state at nominal
time ta using cloud data within a 3 h window centred on ta.
However, it is important to note that the analysis of each
gridcolumn actually occurs at the mean observation time of the
gridcolumn by a single 5 min duration MODIS granule. When
multiple satellites/multiple orbits observe the same gridcolumn

Published 2016. This article is a U.S. Government work
and is in the public domain in the USA. Q. J. R. Meteorol. Soc. 142: 2505–2527 (2016)



2510 P. M. Norris and A. M. da Silva

within the time window, as happens commonly at high latitudes,
the MODIS granule that contributes observations closest to ta

is selected and so the time mismatch with the nominal analysis
time is minimized. Even with this selection, the primary timing
error is that the analysis is actually valid at a time displaced up to
90 min from the nominal analysis time. A secondary timing error
is from interpolation of the GEOS-5 model background state to
the mean observation time of the gridcolumn in order to form
the prior. In time-averaged studies, we expect these two sources
of timing error to act as additional forms of random error.

The cloud data consist of high spatial resolution retrievals
of CO2-slicing cloud-top pressure pc, 10.8–11.3 μm brightness
temperature Tb and visible cloud optical thickness (COT) τ from
the the MODIS instrument aboard the Earth Observing Satellites
Terra and Aqua. pc and Tb are available at a nominal 5 km nadir
pixel resolution, while τ is available at a higher 1 km resolution, all
from the Collection 5.1 ‘MxD06 L2’ Level 2 cloud granules (e.g.
Yang et al., 2007; Wind et al., 2010). The basic quantum of analysis
is the GCM-gridcolumn, so pixels within the analysis window are
associated with the GCM-gridcolumn in which they fall. Clearly,
the number of 1 km pixels within a GCM-gridcolumn can be
large (≈ 625 for a tropical gridcolumn at 1/4◦ model resolution).
It is precisely the statistical cloud information contained in this
collection of pixels that we wish to take advantage of in our CDA
procedure.

The cloud-top pressure is only used if pc ≤ 550 hPa, since
the CO2-slicing algorithm performs poorly for clouds below
this level. The cloud optical thickness is only used for ‘daytime’
gridcolumns, defined as those for which all contained pixels have
a cosine of solar zenith angle ≥ 0.15. In fact, the MODIS cloud
optical property retrievals, including cloud optical thickness, are
not performed for cosines of solar zenith angle below this limit.

All 5 km data are copied to the underlying 1 km grid, so that all
gridcolumn collection and pixel analysis is done at 1 km. We do
this because we want to study the co-distribution of τ with pc and
Tb and because the plan for the soon-to-be-released Collection 6
is to produce pc and Tb at 1 km.

(A) For ‘daytime’ pixels, the 1 km MODIS Cloud Mask
Scientific Data Set (SDS) is used to classify pixels as either
cloudy (those that are ‘confidently or probably cloudy’) or
clear. For consistency, those pixels that are clear according
to this measure have their pc, Tb and τ set to zero. (This
means that (i) copies of 5 km pc and Tb at 1 km are only
retained for 1 km cloudy pixels and (ii) Tb is the brightness
temperature for cloudy pixels, not all pixels.)
After this clear pixel treatment, any pixels that have
undefined values in τ or in both of pc and Tb are discarded.
These may include, for example, attempted but failed
retrievals and so-called ‘clear-sky restoral’ pixels. Such
anomalous retrievals are not easy to forward-model and so
currently must be discarded.
In particular, the Collection 5.1 MODIS optical property
algorithm eliminates some pixels in an ‘edge-restoral’
process (see Zhang and Platnick, 2011; Pincus et al., 2012).
These are pixels that MODIS detects as being on the edge of
clouds and therefore discards from the optical processing
on the basis of what is a fundamentally conservative
retrieval philosophy, namely one that would rather provide
a smaller number of well-defined and reasonably accurate
retrievals than a larger number of cloud pixels containing
potentially dubious data. This is a completely reasonable
retrieval philosophy with distinct benefits for many users of
the MODIS cloud optical properties, but for our particular
purpose it does remove some pixels that could potentially
have useful information content in our CDA application.
The MODIS algorithm does flag such undefined ‘edge-
restoral’ pixels, so this flag contains potentially useful
information for us. We are not, however, currently able
to make use of it, because the forward modelling of cloud
edge effects requires a GCSM that includes horizontal

spatial coherence. This is beyond the current capability of
our algorithms, but see Wind et al. (2013) for an example
of some progress in this direction.

(B) For ‘night-time’ pixels, the 1 km MODIS cloud mask SDS
is either not available or not reliable and the 5 km cloud
mask is only representative of the central 1 km pixel of
the associated 5 × 5 box. Furthermore, for computational
efficiency reasons, we currently do not read the associated
MxD35 L2 cloud mask granule to obtain any further
information on cloudiness at 1 km. Therefore, for night-
time pixels, we currently resort to a cloudy mask if pc

is defined and a clear mask if it is undefined. Again, for
consistency, the pc and Tb of clear pixels are set to zero.
The cloudy pixels have their pc values reset to undefined if
they are considered unreliable (for low clouds, as described
earlier) and are discarded completely if their Tb is also
undefined.

In summary, we end up with a collection of pixels for each
model gridcolumn. Each pixel is either clear or cloudy. Clear
pixels have zero pc and Tb, while cloudy pixels must have a valid
positive pc or Tb (or both). Pixels in daytime gridcolumns also
have a τ value: zero for clear pixels and positive for cloudy pixels.
Finally, if the area covered by a gridcolumn’s collection of pixels
does not cover at least half of the footprint of the gridcolumn, then
the whole gridcolumn is discarded. This weeds out gridcolumns
that are undersampled by MODIS data.

2.5. Forward modelling of observations

Assume we are given an ensemble of generated subcolumns of a
gridcolumn, as discussed in section 2.2. The goal is to produce
a forward-modelled estimate of MODIS-retrieved pc, Tb and
τ for each subcolumn, so that the statistical properties of the
ensemble of such subcolumn observables may be compared with
the statistics of the MODIS observations associated with the
gridcolumn.

The first step is to calculate the visible COT τk of each layer
k of each subcolumn. (The details of the calculation are not
particularly important. They broadly follow the GEOS-5 visible
COT calculation, with cloud condensate amount per equation
(2), a liquid/ice split as in section 2.8 and effective radii that are
functions of pressure only.) The total subcolumn COT τ is just
the sum of τk over all the layers of the subcolumn. If this sum is
less than a nadir-adjusted detection threshold of 0.3μsat optical
depths (where μsat is the cosine of the satellite zenith angle),
then the subcolumn is considered ‘MODIS-clear’, since it falls
below the nominal MODIS optical depth detection limit, and τ

is reset to zero, together with pc and Tb, for consistency with the
treatment of the observations.

Next, for ‘MODIS-cloudy’ subcolumns, the CO2-slicing cloud-
top pressure pc is calculated using the same simple approximation
used by the Cloud Feedback Model Intercomparison Project
(CFMIP) Observation Simulator Package (COSP) MODIS
simulator (Bodas-Salcedo et al., 2011). The details are given in
Appendix C1. The brightness temperature, Tb, is only simulated
if pc is deemed unreliable, namely if the above calculated pc

exceeds 550 hPa, as discussed in section 2.4. In this case, pc is
set to undefined and the 10.5 μm Tb is evaluated with an IR-
only version of the all-sky brightness temperature calculation
used in the COSP International Satellite Cloud Climatology
Project (ISCCP) Clouds and Radiances Using Subgrid Cloud
Overlap Profile Sampler (SCOPS) (ICARUS) algorithm, as in the
Appendix of Klein and Jakob (1999). Details are given in our
Appendix C2.

After simulation of pc, Tb and τ , as above, cloudy pixels have
valid values clipped to [1, 1100] hPa, [150, 350] K and [0, 100],
respectively, to mirror the valid ranges produced by MODIS.
These limits are only occasionally hit for the upper COT limit
(see figure 2 in Part 2). In this sense, our forward model mirrors
the behaviour of the retrieval.
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As a final step, observation errors sampled from a
prescribed observation-error PDF can be added to the simulated
observations. The specification of observation errors is an
important ingredient of any data-assimilation algorithm rooted
in estimation theory. In our context, observation errors include
state-dependent errors in the MODIS cloud retrievals, as well
as errors arising from our forward operators. In a follow-on
study to Wind et al. (2013), we are currently characterizing
these observation errors in an Observing System Simulation
Experiment (OSSE) context using a MODIS cloud retrieval
simulator. For the present study, no observation-error term
is added.

2.6. Evaluation of the likelihood

Given a parameter set α, we must evaluate the posteriori
PDF in (1), or, in practice, its natural logarithm, ln p(α|y) =
ln p(y|α) + ln p(α), up to a constant independent of α. (The
use of the logarithm here mirrors the traditional treatment
of the minimization problem and leads to a more careful
treatment of overflow issues for very large probabilities.) Firstly,
if any parameter is outside acceptable bounds, as specified in
section 2.3.2, then zero probability is returned. Secondly, the
prior p(α) is evaluated per section 2.3.3. This leaves the likelihood,
p(y|α), which (loosely speaking) is the probability of observing y
from a gridcolumn in state α. We will be more precise shortly.

Note that y above refers to the vector of all observations for the
gridcolumn, comprising multiple pixels and multiple properties
per pixel. Consider a gridcolumn with N pixels assigned to it
by the observation-gathering routine (section 2.4). We assume
that the observations at different pixels are independent and
identically distributed (i.i.d.), so that

L ≡ ln p(y|α) ≈
N∑

n=1

ln p̂(ŷn|α), (6)

where ŷn is the vector of properties observed for pixel n and p̂ is
the PDF applying to a single pixel (and common to all pixels).

In reality, we know that nearby pixels will not be independent,
but our statistical model is currently not able to take account
of horizontal coherence within a gridcolumn (the independent
column approximation or ICA). In practice, this means that
we apply more observations to the evaluation of ln p(y|α) than
there are truly independent observations. This will give p(y|α)
an incorrect magnitude, but, ignoring the prior term p(α) for
now, it should not seriously bias the estimation of α if the
variability within a gridcolumn is more or less homogeneous.
The non-independence issue may be problematic, however, if the
gridcolumn footprints are sufficiently large to regularly contain
significant gradients in the scale of variability, in which case it
will create a preferential bias between large and small scales of
variability. We will not consider this possibility further, because
the nominal 1/4◦ GCM model resolution used in our studies is
small and because it is not yet computationally feasible to employ
a GCSM with horizontal spatial coherence.

The presence of the prior term p(α) creates an additional
problem. The posterior PDF p(α|y) is the product of the likelihood
and prior terms. Errors in the likelihood term therefore indirectly
introduce effective errors in the proper influence of the prior
information. In particular, if the gridcolumn is oversampled with
observations compared with the horizontal correlation scale (the
typical separation of independent observations) then the naive
assumption of independence will have the effect of increasing
the influence of the likelihood term erroneously compared with
the prior, or effectively de-weighting prior information. (Using
all the pixels, rather than just a subset representing independent
observations, will cause the term

∑N
n=1 ln p̂(ŷn|α) to exert an

unrealistic influence compared with ln p(α).) The influence of
the prior information is therefore indirectly and erroneously

dependent on the size of the pixel compared with the horizontal
correlation scale. In practice, this error will be introduced in two
ways: (i) because of the spatial and temporal variation of the
horizontal correlation scale with the synoptic condition and (ii)
because of the increase in pixel size towards the extrema of the scan
lines. While some simple correction for (ii) might be possible, (i)
will require an earnest treatment of horizontal spatial coherence,
which is currently not computationally feasible and is deferred
until future work. Thus, we proceed with our independent
observations assumption, mindful that some geographical and
scan-angle-dependent biases may be introduced.

Returning to (6), in our case, ŷn ≡ (ln τ , ω)n, where ω is
either pc if pc ≤ 550 hPa or Tb otherwise. We prefer to use the
logarithm of τ , rather than τ itself, because the former is more
symmetrically distributed. The meaning of p̂(ŷn|α) is non-trivial,
because we must account for both cloudy pixels (τ , ω > 0) and
clear pixels (τ , ω = 0). The latter are produced not only by very
thin clouds that fall below the MODIS detection limit, but in large
part from truly clear portions of the gridcolumn. (In this sense,
clear pixels are akin to a type of ‘left-censored’ observation.)
The precise meaning of the likelihood p̂(ŷn|α) in (6) is explained
in Appendix B1, namely that it is P◦(α) for clear pixels and
P•(α) p̂•(ŷn|α) for cloudy pixels, where P◦(α) is the likelihood
of a clear pixel, P•(α) = 1 − P◦(α) is the likelihood of a cloudy
pixel and p̂•(ŷ|α) is the likelihood density conditioned for cloudy
pixels only, such that its integral over all cloudy ŷ is one. Note
that P◦(α) and P•(α) are pure probabilities, while p̂•(ŷ|α) is a
probability density with respect to ŷ.

To proceed, we must know how to evaluate the likelihoods
P◦(α) and p̂•(ŷ|α) at any test point α in parameter space. Ideally,
an analytic expression for these two quantities would be provided.
However, for the complex multi-layer GCSM of section 2.2 and
the complex observation operators for pc, Tb and τ of section 2.5,
it is effectively impossible to provide or evaluate such analytic
expressions. More precisely, for P◦(α) and the Gaussian copula
vertical correlation model described earlier, an analytic expression
is available (see N08), but it is computationally too expensive
to use it. The term p̂•(ŷ|α) is even worse, being expressible
only in terms of a complex multidimensional integral that
would need numerical evaluation anyway and would be likewise
computationally prohibitive. Rather, following the example of
N08, we perform a Monte Carlo evaluation of both P◦(α) and
p̂•(ŷ|α) using an ensemble of Nsim subcolumns generated at α
(see section 2.2), as described below.

Say there are N◦ clear pixels and N• ≡ N − N◦ cloudy pixels
in the observations. The clear pixels contribute

L◦ = N◦ ln P◦(α), (7)

to (6). P◦(α) is estimated by the ratio of the number of
clear simulated subcolumns to the total number of simulated
subcolumns Nsim for subcolumn generation at α. Conversely, the
cloudy pixels contribute

L• = N• ln P•(α) +
∑
n∈•

ln p̂•(ŷn|α), (8)

where ‘n ∈ •’ indexes cloudy pixels only. Before proceeding, there
is a further level of conditioning that must be addressed. Namely,
the cloudy pixels are decomposed further into two sets: those
for which ω = pc, indexed as ‘n ∈ •pc’, and the complement for
which ω = Tb, indexed as ‘n ∈ •Tb’. Then, using the lines of the
argumentation above, we can rewrite (8) as

L• =N• ln P•(α) + N•pc ln P(pc|•, α)

+
∑

n∈•pc

ln p̂•pc ((ln τ , pc)n|α) + N•Tb ln P(Tb|•, α)

+
∑

n∈•Tb

ln p̂•Tb ((ln τ , Tb)n|α),

(9)
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where N•pc and N•Tb are the number of pc-cloudy and Tb-cloudy
pixels (with N•pc + N•Tb = N•) and P(pc|•, α) and P(Tb|•, α)
are the likelihoods of such pixels, conditioned on cloudiness in
general. In practice, these likelihoods are estimated as the ratios of
the number of pc-cloudy and Tb-cloudy generated subcolumns,
respectively, to the total number of cloudy generated subcolumns
at α (section 2.5). The term p̂•pc ((ln τ , pc)|α) is the likelihood
density conditioned for pc-cloudy pixels only, such that its integral
over the domain on which both τ > 0 and pc > 0 is one. In
practice it is estimated from the collection of all subcolumns
generated at α that are both cloudy and have pc available, as
described in the next paragraph. Analogous comments apply for
p̂•Tb ((ln τ , Tb)|α).

The likelihood p̂•pc ((ln τ , pc)|α) is estimated by the empirical
PDF of the subset of subcolumns generated at α that are both
cloudy and have pc available. The input is the set of (τ > 0, pc > 0)
pairs produced by the subcolumn generation, which we will
denote as {(τ , pc)}. The number of such pairs will be denoted as
Nsim•pc

. Several possible PDF construction methods are used. The
most basic is a single two-dimensional (2D) Gaussian distribution
using the sample mean and covariance of {(ln τ , pc)}. This has the
advantage of simplicity and speed, but the disadvantage of being
unimodal, symmetric and of fixed parametric (Gaussian) form.
A much less restrictive method is to use a kernel density estimate
(KDE) with Gaussian kernels. This KDE can represent complex,
multimodal distributions and is our default method. A few details
of the KDE application are given in Appendix B3. There is a
further method that captures the simplicity and efficiency of the
single Gaussian PDF, but relaxes the latter’s Gaussian marginals
for ln τ and pc. It is the Gaussian copula (GCOP) discussed in
N08, which allows the coupling of arbitrary marginals for ln τ and
pc. We have not yet tried this GCOP method, but it may prove
to be useful and efficient, especially in cases where the (ln τ , pc)
distribution is unimodal but non-Gaussian.

Note that all the above applies analogously for the Tb-cloudy
likelihood p̂•Tb ((ln τ , Tb)|α) in the third line of (9). We decided
to use an ‘either/or’ approach for pc and Tb, namely opting to
use the brightness temperature only when pc > 550 hPa. There
is nothing to stop the retrieval and simulation of brightness
temperature all of the time. In that case, one would need
to use a 3D (ln τ , pc, Tb) PDF when pc was available. A 3D
KDE is somewhat more complicated and expensive, so we
have decided to use the either/or approach for now. However,
higher-dimensional observation spaces definitely warrant further
investigation, particularly since they may be appropriate for
multi-spectral cloudy radiance assimilation. Perhaps a higher-
dimensional Gaussian or GCOP may prove acceptable for such
cases. Nevertheless, it is likely that the usefulness of our method
will be restricted to analyses with a small number of observables
per pixel, be they retrieved quantities or radiances.

This completes the basic description of the likelihood
evaluation. Additional technical details regarding the efficient
computational implementation of the algorithm are given in
Appendix B2.

2.7. Monte Carlo characterization of the posterior PDF

In the previous section, we presented our method for evaluating
p(α|y) at a particular α. We now outline the method used to
find the set of parameters α that maximizes this posterior PDF
and also characterizes the PDF more fully, so that error estimates
for the optimal α may be provided or we may look for multiple
modes, for example. The method is a form of MCMC. Such
methods make quasi-random jumps around parameter space,
such that, as the number of jumps becomes large, the collection
of sampled α is representative of the target PDF. The application
of MCMC to Bayesian analysis is discussed thoroughly in Gelman
et al. (2004). Posselt (2013) also provides a nice introduction, with
applications to satellite retrieval and model parameter estimation.

Several of the benefits of using this sort of Monte Carlo method
were discussed in section 2.1.

2.7.1. Background: the Metropolis–Hastings algorithm

First, we will outline the traditional Metropolis–Hastings (MH)
approach to MCMC. This is necessary to explain the ‘curse of
dimensionality’ problem with the MH algorithm, which justifies
our use of an alternative and less commonly known variant of
MCMC, the multiple-try Metropolis (MTM) method of Liu et al.
(2000), described later in this section. The following discussion
of the MH algorithm serves as a good baseline and introduction
to the MTM method described later.

The target distribution we wish to sample, the posteriori
PDF p(α|y), will be denoted simply as π(α). More precisely,
π(α) ≡ p(y|α) p(α), the product of the prior and likelihood
terms, since the other factor p−1(y) in Bayes’ formula is
independent of the parameters α we are maximizing against.
The MH algorithm produces a Markov chain α0, α1, . . . , αn, such
that, as n → ∞, the collection of points in the chain is an accurate
statistical sample from π(α). (In practice, for finite chains, an
optional initial portion of the chain, the ‘burn-in’ portion that
remembers α0, may be discarded. This burn-in period is also
typically used to tune the first-guess proposal covariance, based
on the initial sampling of the target distribution during the burn-
in.) The procedure for going from αt to αt+1 is as follows: produce
a trial point α′ from a proposal PDF q(α′;αt). Calculate the ‘MH
ratio’:

rMH = min

{
π(α′) q(αt;α′)
π(αt) q(α′;αt)

, 1

}
. (10)

This is the probability of acceptance of the jump from αt to α′.
Thus, if a random number drawn uniformly from [0, 1] is less
than rMH, then αt+1 = α′, otherwise the old point is retained,
αt+1 = αt . The proposal distribution q remains to be specified.
If it is symmetric, then the q terms cancel. This is the case with a
multivariate Gaussian distribution (which is also our choice):

q(α′;αt) = e− 1
2 (α′−αt )T�−1

q (α′−αt )

{(2π)d|�q|}1/2
, (11)

where �q is the proposal covariance matrix and d is the
number of dimensions. Thus, for the symmetric q case, (10)
reduces to rMH = min{π(α′)/π(αt), 1}. Clearly, if the trial jump
moves to higher target probability then it is unconditionally
accepted. If, however, π(α′) is reduced from π(αt), the jump
is only conditionally accepted, with a probability proportional
to π(α′)/π(αt). Thus, while large reductions are unlikely, they
are still possible, a fact that permits the algorithm to leave the
vicinity of a local maximum and potentially to find the global
maximum.

Note that advancing from αt to αt+1 is a two-step procedure:
first proposing a trial α′, then conditionally accepting it (or
not). Thus, the probability of a chain transition from a point
α to a new (i.e. different) point in a small volume dα′
containing α′, denoted a(α′;α) dα′, is not the MH ratio for the
proposed transition, but rather q(α′;α) dα′ times the ratio. For
symmetric q, then, a(α′;α) = q(α′;α) min{π(α′)/π(α), 1} and
so π(α) a(α′;α) = q(α′;α) min{π(α′), π(α)} = π(α′) a(α;α′),
or, written in another way,

a(α′;α)

a(α;α′)
= π(α′)

π(α)
. (12)

This means, for example, that if π(α′) is twice π(α) then the
probability of moving from α to α′ is twice that of moving in the
reverse direction. This symmetry is known as ‘detailed balance’
and ensures that the Markov chain converges to sampling π(α)
accurately for a long enough chain (e.g. Andrieu et al., 2003).
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Now, imagine thatαt is in the vicinity of either a local maximum
or the global maximum of π(α). In the former case, the goal is to
jump off the maximum and search for the global maximum. In
either case, however, as discussed in section 2.1, the goal is also
to sample the entire PDF and not just find the global maximum.
First, say that the typical size of a trial jump |α′ − αt | is very
small compared with the underlying local scale of π(α). Then
individual jumps will produce very small changes in π(α) and
so the acceptance rate will be very high. (The ‘acceptance rate’
is the fraction of accepted trials in some finite sequence of the
chain.) This will lead to a slow, near-random walk, with small
steps, through the α domain and a very inefficient sampling
of π(α). Conversely, say that the typical size of a trial jump
is large relative to the underlying local scale of π(α). In this
case, if we are in the vicinity of a local maximum or the global
maximum, a typical trial jump will severely reduce π(α′) from
π(αt) and so the acceptance rate will be very small. This will again
lead to very inefficient sampling of π(α) (and also potentially
a very inefficient search for the global maximum if we are on
a local maximum). Based on this argument, there ought to be
some optimal intermediate acceptance rate, associated with some
intermediate and optimal typical trial jump size, that leads to the
most efficient sampling of π(α).

According to a number of studies (see Posselt, 2013, for
references), for large d the optimal acceptance rate is about 20%
(and 23.4%, in particular, for a target π(α) with i.i.d. components
of α). According to Roberts and Rosenthal (2001), the optimal
�q is proportional to the covariance of the target distribution,
�π , although the latter is not generally known a priori. For a
multivariate Gaussian π(α), the optimal �q is

�q ≈ (2.4)2

d
�π . (13)

The reason for this effective scaling of the proposal jumps
by d−1/2 with respect to the scale of the target distribution
is instructive for our discussion. Consider a multivariate
Gaussian proposal distribution with a simple diagonal covariance
�q = σ 2

q I. Then the proposal PDF is

q(α′;αt) = e− 1
2 |α′−αt |2/σ 2

q

(
σq

√
2π

)d
, (14)

and the margin of each α′
i is Gaussian with mean αti and standard

deviation σq. Thus the scaled radial jump distance,

R ≡ |α′ − αt |
σq

=
√√√√ d∑

i=1

(
α′

i − αti

σq

)2

, (15)

is the root sum square of a set of independent standard Gaussians
and therefore has a χ(d) distribution, with mode

√
d − 1. Thus

the modal scaled jump distance varies as
√

d for large d. Now,
say the target distribution is centred on αt , with covariance
�π = σ 2

π I. It will therefore have the same form as (14), but with
σπ replacing σq, and so the modal proposal jump above will
lead to an MH ratio rMH = π(α′)/π(αt) = exp(− 1

2 σ 2
q /σ 2

π × d).

This, then, is why σq must be scaled by d−1/2 with respect to σπ ,
otherwise a typical proposal jump will give an extremely low MH
ratio and acceptance rate, especially as the dimensionality of the
problem becomes large.

Now the so-called ‘curse of dimensionality’ becomes clear:
by using the scaling (13) to keep a reasonable acceptance rate,
the scale of the proposal jumps, σq ≈ 2.4 σπ/

√
d, becomes very

small with respect to the scale of the target distribution σπ

as the dimensionality becomes large (or, in other words, each
dimension (parameter) αi becomes extremely oversampled). This
is the reason that the MH algorithm becomes very slow for large-
dimensional problems and is the background and motivation for
the MTM method of Liu et al. (2000).

2.7.2. The multiple-try Metropolis algorithm

The MTM algorithm of Liu et al. (2000) seeks to mitigate the
‘curse of dimensionality’ of the MH algorithm by allowing
larger trial jumps but still retaining a reasonable acceptance
rate. Alternatively, we could say that by sampling the multi-
dimensional parameter space more efficiently at each point in
the Markov chain, faster convergence is achieved, i.e. fewer chain
elements are required.

We use a simplified version of MTM that applies for a
symmetric proposal q(α′;αt), such as the multivariate Gaussian
(11) we are using. The algorithm is as follows.

• Make not one, but M independent trials α′
1, . . . , α′

M from
the proposal distribution q( · ;αt).

• Randomly select one of these, denoted as α′, from among
the trials, but with a probability proportional to the π( · )
of the points.

• Then from this α′ draw a further M − 1 ‘reference’ trials
α∗

1, . . . , α∗
M−1 from q( · ;α′) and set an Mth reference point

equal to the starting point, α∗
M = αt .

• Finally, accept αt+1 = α′ with probability

rMTM = min

{
π(α′

1) + . . . + π(α′
M)

π(α∗
1) + . . . + π(α∗

M)
, 1

}
, (16)

otherwise retain αt+1 = αt .

Though more complicated, detailed balance (12) can also be
proved for MTM.

The fact that a larger modal trial jump distance is possible,
compared with MH, is not so easy to prove. By experimentation
in the current CDA context (as described here in Part 1 and tested
in Part 2), we have found that the MTM proposal covariance
matrix �q may be a factor C = 32 times the optimal MH value
of (13). Details of this experimentation are found in Part 2. For
the estimated covariance matrix �π of (13), we use the following
properties: for S̄, we use the vertically correlated form in (5);
for PL and β, we also use the form (5) but with σ 2

PL
and σ 2

β

replacing σ 2
S̄

. Nominally, σPL = 0.1 and σβ = 0.1, given that the
valid ranges of PL and β are [0, 1]. Also, as for the prior (section
2.3.3), the covariance between the S̄, PL and β parameters is taken
as zero. This is a default assumption that will be changed once a
cycling CDA with ensemble α evolution is implemented.

The MTM implementation is performed carefully in terms of
the logarithm of π(α), in order to avoid overflow problems. The
length of the chain n and the number of trials M per point αt will
be investigated as part of a series of sensitivity tests in Part 2. As a
nominal guide, however, working reasonably well for the current
context, we use n = 200 and M = fM × M∗, where fM = 1/2 and
M∗ = 3 × (1000 − plim)/L, i.e. the number of parameters per
layer, three (namely, S̄, PL and β), times the approximate number
of effectively independent layers in the gridcolumn. See Part 2 for
further discussion of these choices.

Although we mentioned above an optional burn-in period
in which the specified first-guess proposal covariance is tuned,
in our implementation we do not use such a burn-in period,
but simply sample the target distribution using a fixed n = 200
point chain (where, as above, each point in the chain uses many
(M = 14 in our case) trials from the proposal distribution, not
one as in MH). We did experiment with various burn-in periods
and proposal tuning cycles, but found that they did not improve
the results and took more time.

Moreover, our fixed n = 200 point MTM chain employs no
MCMC convergence criterion for the following reasons.

(1) Achieving convergence for MCMC is currently more of
an art than a science. Theoretical convergence rates are
currently few and far between and of limited practical
use. Diagnostic methods offer some help, but none is
conclusive in saying when the unknown target distribution
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has been sampled satisfactorily. Furthermore, many of the
diagnostic methods are expensive in themselves. Please see,
for example, Cowles and Carlin (1996).

(2) We are not solving a single Bayesian inference problem as
thoroughly as we possibly can, but trying to estimate
a posterior mode and its error characteristics, rather
approximately, for hundreds of thousands of problems
(gridcolumns) at each analysis time. We therefore seek a
very efficient and simple method of terminating the MCMC
chain. Computational efficiency is paramount if one is
seeking an algorithm for operational implementation.

2.8. Other implementation details

The CDA method described in this article has a very simple
treatment of thermodynamic phase. Separate liquid water and
ice contents, if present in the background state, are combined to
a total condensate content. When the phase must be taken into
account explicitly for a forward model calculation, such as for
cloud optical thickness and infrared emissivity, the condensate
is taken as all ice below −35 ◦C, all liquid above 0 ◦C and a
mixed fraction, linear in temperature, between these limits. This
same weighting is also used to calculate the saturation vapour
content qs from the values over pure ice and liquid water and the
maximum total saturation ratio Smax from values of 1.4 for ice and
1.1 for water. We regard these latter values as reasonable upper
limits to the total saturation ratio, corresponding, respectively,
to maximum liquid cloud water and cloud ice contents of 10%
and 40% of the local saturation vapour content. The simplistic
treatment of phase above is certainly a weak point of the current
method that deserves further attention. The real phase split within
mixed-phase clouds depends on many details of the local dynamic
and thermodynamic environment (see, e.g., Noh et al., 2013).

The GEOS-5 GCM used for the background state in this
study has a simple latitude–longitude grid. Because this native
grid would cause sampling problems near the poles, where
the area of the gridcolumn footprint becomes very small, a
more equal-area ‘reduced longitude grid’ was used for the CDA
analysis described here and in Part 2. This grid retains the
native IM GCM longitudes per latitude for latitudes in the range
[30◦S, 30◦N], but outside this range uses a reduced number,
approximately 1 + (IM − 1) cos(λ)/ cos(30◦), of longitudes per
latitude, where λ is the latitude. The term ‘gridcolumn’ in Parts 1
and 2 actually refers to this reduced longitude grid. Aggregation
and interpolation to this reduced grid are performed as necessary.
Once GEOS-5 transitions to the close-to-equal-area cubed-sphere
grid planned for GEOS-6, this reduced longitude grid will no
longer be necessary.

3. A simple synthetic illustration of our method

In section 2, we provided a detailed description of our Bayesian
MCMC CDA algorithm for assimilation of MODIS cloud data
into realistic GCM-gridcolumns. A detailed testing of this
algorithm with real MODIS data is provided in Part 2 of this
series. However, in preparation, we conduct here a simpler and
confidence-building test of the basic capability of the Monte Carlo
algorithm in a more limited yet instructive context.

We will illustrate the ability of the algorithm to reconstruct
realistic skewed triangle PDFs using censored synthetic cloud
observations simulated from them. For the purpose of a
straightforward illustration, we will limit our focus to the case of a
single model layer, rather than a coupled vertical column of them.
The model state is therefore a single triangular PDF characterized
by the three parameters (PL, β, S̄).

Our illustration uses five case-study triangular PDFs in S
(total saturation ratio): a clear case, three partially cloudy cases,
with low, medium and high cloud fraction, and an overcast
case. For each case, we take N = 625 random samples from the
distribution, approximately the number of 1 km pixels in a 1/4◦

gridcolumn. For each sample, the condensate-like observable
Sc ≡ max(S − 1, 0) is evaluated. (This observable is a simple
analogue of τ for a single model layer.) The PDF from which
these samples are drawn is called the ‘truth’ PDF, since it is used
to specify synthetic Sc observations.

Each MCMC chain also begins from one of the five case-study
triangles, but this one is called the ‘background’ PDF or initial
condition. We thus perform 25 MCMC chains, one for every
combination of background and truth PDFs from the five case-
study triangles. Actually, we perform ten times as many chains,
or 250 chains, since we make ten different realizations of the N
synthetic observables for each truth triangle.

The most probable element from each MCMC chain is called
the ‘analysis’ PDF and is compared with the truth PDF to
determine the effectiveness of the Bayesian MCMC algorithm in
recovering the truth using synthetic observations generated from
it. It is important to remember, however, that the actual ‘analysis’
contains far more information than just the most probable PDF.
Namely, the full a posteriori distribution of PDF parameters is
obtained. We will see this in the subsequent result plots.

We have conducted this study with and without a prior in the
parameters. However, the results we present below are without a
prior, since this provides a more exacting test of the ability of the
algorithm to retrieve the ‘truth’ from a potentially distant initial
condition. Therefore, with no prior, the only non-observation
constraint provided for S is that the triangle must lie wholly
within [0, Smax], with a fixed Smax = 1.1. Similarly, the skewness
parameter PL is always constrained to [0.1, 0.9] and the width
scaling parameter β to [0, 1].

For the complex multi-layer GCSM of section 2.2 and the
complex observation operators for pc, Tb and τ of section 2.5, it is
necessary to employ a KDE-based likelihood using simulated
cloudy observations (section 2.6), since an analytic PDF is
intractable in that case. However, in the present simpler illustrative
study (a single triangle PDF and the simple observable Sc), an
analytic likelihood is easily derivable and is therefore used. Full
details of this analytic likelihood are given in Appendix D. Using
an analytic likelihood is preferable, since it provides a more direct
test of the MCMC algorithm, without the added error due to a
KDE approximation. We will address the choice of an analytic
over KDE-based likelihood further in section 3.1 below.

Consequently, since we use an analytic PDF for Sc, it is
unnecessary to generate Nsim observables at each test point α
in parameter space (in order to form an empirical KDE-based
likelihood of the observables.) Rather, the likelihood can be
evaluated directly from the observations using the analytic PDF
of Sc at α. See Appendix D for further details.

Several of the algorithmic parameters were changed because of
the reduced dimensionality of this illustration compared with the
full gridcolumn algorithm.

(1) We use M = 3 trials per chain element, equal to the number
of parameters.

(2) As above, we no longer need Nsim. For N•max (see
Appendix B2), we use a value in excess of N, the number
of observations, meaning that every observation is used in
evaluating the likelihood, not a random subset of them.
There is no need to use a random subset for this illustration,
since execution time is not at a premium and, again,
removing unnecessary approximations focuses the study
on the target: the capabilities of the MCMC algorithm.

(3) As per section 2.7.2, we use assumed target standard
deviations σPL = σβ = σS̄ = 0.1. For the full gridcolumn
case, based on (13), this translates to a proposal
standard deviation in each dimension of σq = √

32 ×
2.4/

√
30 × 3 × 0.1 ≈ 0.14, where we have used the

suggested proposal covariance amplification factor of
C = 32 (section 2.7.2) and where there are typically about
30 model layers below the tropopause (see section 2.3.2)
and each has three triangle PDF parameters. However,
for the current single-layer test, we will use C = 0.01,
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which translates to σq = √
0.01 × 2.4/

√
3 × 0.1 ≈ 0.014,

about ten times smaller than the full gridcolumn case. We
use this finer sampling of parameter space for the one-
layer illustration, because we do not have the operational
constraints of the full CDA algorithm and because we want
to examine the posterior PDF in fine detail.

(4) However, as a result of this finer sampling of the posterior,
we use a much larger number of chain elements n = 10 000
than in the full gridcolumn n = 200 case. Since the
number M of trial samples per chain element has been
reduced from 14 (section 2.7.2) to 3 (item (1) above),
this translates to an increase in posterior samplings by a
factor of 10 000 × 3 / 200 × 14, or about 10 times. We will
comment on the sensitivity to these parameter choices in
section 3.1 below.

Of the 25 initial-condition/truth pairings, four diverse cases
were selected for presentation here. The first of the ten realizations
of these cases is illustrated in Figure 2. Case (a) has an initial
condition starting from the truth and yields a very similar
analysis; case (b) has excessive cloud fraction in the initial
condition, but the analysis yields a near-truth PDF; case (c)
starts from an unrealistic completely clear state but manages
to restore the observed cloudiness, albeit with a less accurate
analyzed PDF; and case (d) is a challenging case where the true
cloud fraction is very small, so the synthetic observations provide
more limited information. Nevertheless, the analysis from an
unrealistic overcast initial condition yields a fairly reasonable
analysis.

To investigate these cases in more detail, we look at details
of the posterior distribution and MCMC chain behaviour in
Figure 3. Because the parameter space is three-dimensional, we
show the two-dimensional marginals for each of the parameter
pairs: (PL, β), (PL, S̄) and (β, S̄). For each marginal, the underlying
colour plot is a kernel density estimate of the posterior marginal
formed from all the chain elements. The blue cross shows the
initial condition, the orange square the ‘truth’ and the large red
dot the ‘analysis’, or, more precisely, the chain element with
maximum a posteriori probability (MAP).

Consider first case (a), in the first column of Figure 3, for
which the starting point of the chain is coincident with the
truth. It might be expected in this case that the MAP is at the
initial condition. In fact, the analysis is displaced slightly from
the truth/initial condition, though certainly near the centre of
the KDE of marginal posterior probability. This displacement
occurs because of the finite sampling (N = 625 points) of the
observable, so that the truth is only approximately represented by
the synthetic observations. Nevertheless, noting the scale of the
axes, the truth and analysis are indeed very close. Furthermore,
as noted in the Introduction, since we have not only the MAP
‘analysis’ point (large red dot) but the full three-dimensional
MCMC chain (from which a detailed KDE of the posterior
distribution can be evaluated), we automatically have significant
information to quantify the likely errors in the MAP ‘analysis’
parameters. The dependence of these errors on the true cloud
fraction and on the number of observations (samples) is studied
in section 3.1 below.

The other point that needs clarifying is that the analysis (large
red dot) does not coincide with the maximum of the marginal
KDE of the chain points (the underlying colour plot). This is
because the KDE plot is of the marginal, i.e. it is the two-
dimensional KDE of the chain points for the two parameters of
the axes shown. This is an approximation to the full posterior
probability integrated in the excluded third dimension. In other
words, the maximum of the posterior probability in three
dimensions does not coincide with its maximum after integration
in one of the dimensions.

By contrast, for cases (b)–(d), the initial point in the chain is
a significant distance from the truth, but the marginal plots show
that the chain is able to make its way to the region of significant
posterior probability near the truth and and explore it. As noted in

the Introduction, this is a significant advantage of the algorithm,
being able to move out of regions of even zero posterior probability.
For example, the initial condition in case (c) is completely clear
and therefore has zero probability of producing the observed
cloudiness. Not only this, but the likelihood has all zero partial
derivatives with respect to the parameters at this subsaturated
initial condition. Nevertheless, the MCMC algorithm, with its
non-gradient approach, is able to advance to a reasonable solution.

Despite this success, we note that the marginal KDEs for cases
(b)–(d) show a rather elongated structure and that in case (c) a
large error between truth and analysis occurs in PL. To explain
this, we first note that cases (b)–(d) all have cloud only in the
falling upper leg of the truth triangle (see Figure 2). Thus, the
probability density in the cloudy region, which determines the
probability of occurrence of the cloudy observations (Sc > 0), has
a simple linear variation with S and is therefore fully specified by
only two rather than the full three parameters of the triangular
PDF. In particular, we need only specify the upper intersect SH

and the slope, which is just the negative of the height of the triangle
2/� divided by the upper leg width PH�, yielding −2/θH, where
θH ≡ PH�2. Likewise, the clear observations, which all collapse to
the censored Sc = 0 observable, occur with a probability of 1 − f
per observation, where f is the cloud fraction. Clearly, however,
if the probability density pS(s) in the falling leg depends only on
SH and θH, then so does f , which is the integral of pS(s) from 1
to SH. For these reasons, for the case of cloud only in the falling
upper leg of the triangle, we might expect that any solution with
the same SH and product PH�2 will yield the same posterior
probability.

While this is simply a heuristic explanation, it is fully validated
by the detailed mathematical analysis presented in Appendix D.
Namely, it is shown that the MAP solution for infinite observations
drawn from a truth PDF with cloud only in the falling upper leg
is any triangle with the same upper bound SH and the same
θH ≡ PH�2 as the truth, so long as its upper falling leg also
contains the cloud fully. This is a classic identifiability problem.
There is not just one theoretical MAP solution, but a whole
family, having the same SH and the same product PH�2 as the
truth. This family of MAP solutions is shown as the magenta
line in Figure 3 for cases (b)–(d). The dashed magenta lines are
the limits of applicability in PL of this theoretical solution, as
explained in Appendix D.

Clearly the centre of the marginal KDE follows the magenta
theoretical MAP solution quite closely for cases (b) and (c).
Also, the MCMC analysis (large red dot) in case (c), while
poor compared with the truth in PL, is explained well by the
identifiability issue, falling on the theoretical MAP curve. For case
(d), the theoretical MAP curve is displaced somewhat from the
marginal KDE, but remember that the theoretical curve is for
perfect sampling (infinite observations), whereas we use only 625
observations. Clearly the cloudy observations (Sc > 0) contain
more information than the censored clear observations (Sc = 0)
and for case (d), with its very small cloud fraction, there are very
few cloudy observations to constrain the solution. Therefore, it is
not surprising that this case (d) has the marginal KDE that deviates
most from the perfect sampling theory (see also section 3.1).

Figures 2 and 3 show only the first of ten separate realizations of
observations from the truth. The other nine (not shown) confirm
all of the conclusions above and, in particular, show variability of
the analysis across the breadth of the perfect sampling curve for
cases (b)–(d).

This completes our illustrative study of the Bayesian MCMC
approach for a single-layer triangular PDF with a condensate-
like censored observable. On the one hand, the illustration
demonstrates the basic success of the MCMC algorithm in finding
the theoretical MAP analysis, even from quite distant and very low
probability initial conditions. On the other hand, the illustration
has identified an identifiability problem for certain truth triangles.
The cause of this problem relates to the simple piecewise linearity
of the triangular PDF model, thereby sometimes reducing the
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Figure 2. Four test cases for reconstruction of a triangular PDF from synthetic data (see text): ‘initial’ is the PDF from which the MCMC chain begins; ‘truth’ is
the PDF from which the synthetic Sc observations were generated; ‘analysis’ is the PDF from the most probable element of the MCMC chain. Each PDF is in total
saturation ratio S, with the mean shown as a vertical dotted line and the saturated portion (S > 1) shaded. Each PDF has a nominal vertical scaling – in reality, every
PDF has a unit integral. Case (a) starts from the truth and yields a very similar analysis; (b) has excessive cloud fraction in the initial condition, but the analysis
yields a near-truth PDF; (c) starts from an unrealistic completely clear state but manages to restore the observed cloudiness, albeit with a less accurate analyzed PDF;
(d) is a challenging case where the true cloud fraction is very small, so the synthetic observations provide more limited information. Nevertheless, the analysis from an
unrealistic overcast starting point yields a fairly reasonable analysis.

MAP solution to only two parameters, rather than the full three
independent parameters. In retrospect, it might have been better
to have used a smooth three-parameter PDF, such as the GEV
distribution used in Norris et al. (2008). Then again, such more
complex PDFs become analytically intractable very quickly.

In reality, this identifiability problem will be quickly mitigated
in the multi-layer problem that is the main focus of Parts 1 and 2
of this series. This is because the sum over multiple layer triangles
with any degree of vertical decorrelation quickly becomes smooth.
For this reason, we do not expect this identifiability problem to
manifest itself strongly in the results of Part 2 and there is no
evidence that it does.

A more likely limitation for the method is the increased
error for small cloud fractions, due to the limited constraining
information then available. This is not a limitation of this method
alone and is one reason why a prior PDF is required. Nevertheless,
it is surprising how well the MAP solution performs for our low
cloud-fraction case (d), even without a prior and even from a
relatively distant initial condition (see also section 3.1).

Finally, it should be noted that the identifiability problems
discussed above arise due to the censored observation operator
Sc, which collapses to zero for all clear observations. If we were
to add to the problem some ability to quantify the observed
water vapour from the clear pixels, this would greatly enhance the
information content available to constrain the analysis, especially
in the single-layer case shown in this illustration. Indeed, we have
conducted additional studies (not shown) replacing the censored
observable Sc with the full moisture observable S. This causes the
identifiability problem to disappear and the analysis is excellent.
In this case, it is largely only the limited number of available
observations that limits the accuracy of the analysis. This argues
for the strong value-added potential of vapour observations, even
if they are less spatially resolved.

3.1. Assumption/sensitivity studies

We conducted several additional studies, as a follow-up to the
illustrative study above, to investigate the sensitivity of the Monte
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Figure 3. The plots show the two-dimensional marginals of the posterior PDF in (PL, β, S̄) for the cases (a)–(d) of Figure 2. The first, second and third rows show the
marginals in (PL, β), (PL, S̄) and (β, S̄), respectively. Each underlying colour plot is a kernel density estimate of the marginal. The blue cross is the initial condition,
the orange square is the ‘truth’ and the large red dot is the ‘analysis’. The small red dots show the first 100 elements of the MCMC chain, while the black dots show
every tenth element thereafter. The magenta solid and dashed lines for cases (b)–(d) show the theoretical maximum a posteriori solution and its limits of applicability
(see text). Overall, the plots show both the strength of the MCMC algorithm in finding distant maxima and the errors in the analysis due to the limited information
content of the synthetic observations and other algorithmic constraints, as described in the text. (Note the very different axis limits for each case.)

Carlo MAP analysis to various assumptions made, such as the use
of an analytic versus KDE-based likelihood or various parameter
choices, such as the number of observations N. The control will
be the analytic likelihood and parameters noted in section 3, but
we will use nine truth triangles spanning clear to overcast, instead
of the earlier five, to sample the cloud fraction dependence better.

Figure 4 shows a comparison of the biases of the MAP
values of five parameters (S̄, �, PL, SH and θH) for the
exact analytic triangular likelihood discussed in section 3 and
the approximate KDE-based likelihood used by the full CDA
algorithm (section 2.6).

We make the following observations.

(1) The truth triangles with modes St∗ ≤ 1 have large biases in
PL and �, since these triangles suffer from the identifiability
problem discussed above. The biases of the parameters SH

and θH not affected by this identifiability issue are more
acceptable.

(2) Large cloud fractions generally have smaller biases. This
shows the value of near-full sampling of the truth triangles
by cloudy observations and suggests the potential benefit
of adding vapour observations in partially cloudy cases.

(3) In general, the approximate KDE-based likelihood solution
approaches the exact analytic solution for SH and θH as we
increase the number of simulated points Nsim on which
the KDE is based. The figure shows the improvement
from Nsim = 64 to 128 and the 256 case (not shown) is
even better. A larger Nsim provides more cloudy samples
with which to approximate the piecewise linear analytic
likelihood with a KDE. Despite this reasonable approach
of the KDE to analytic solution, we do note the somewhat
different bias signatures between the two. This is most
obvious for PL, where the KDE solution tends to have
larger positive biases for mid-range cloud fractions and

larger negative biases for the overcast case. These differences
are to be expected. There are fundamental limits to the use
of a smooth KDE to model a piecewise linear triangular
likelihood.

Figure 5 shows the dependence on N (the number of synthetic
observations) of the median and interquartile range (IQR) bias,
as a function of true cloud fraction, for the two parameters SH and
θH not affected by identifiability issues. These results are for the
analytic likelihood and parameter values described in section 3.
Each median/IQR is for the 90 cases (ten observable realizations
for each truth triangle and nine different initial triangles) also used
for Figure 4. The study is performed for three different N, namely
25, 625 and 2500, corresponding, respectively, to approximate
numbers of 5 km, 1 km and 500 m pixels in a 1/4◦ gridbox.
Clearly, from the figure, increasing the number of observations
reduces both the median and IQR bias, especially between 5 and
1 km resolutions.

Finally, we also investigated (not shown) the dependence of
the median and IQR bias on the MCMC parameters M, C
and n discussed in section 3 above. The dependence on these
parameters (about the values chosen in section 3) was minimal,
illustrating a certain robustness to the MCMC approach. M was
varied over 1–5 (control 3), C was varied over 0.0001–1 (control
0.01) and n was varied over 5000–20 000 (control 10 000). Note
that there is a danger in going to smaller n values because all
nine (or, in section 3, five) truth/initial-condition triangles used
in these illustrative studies have the same PL and � – they are
just translations in S of the same triangle PDF, the translated
PDFs spanning clear to overcast cases. Because of this, errors in
PL, for example, will tend to zero as n → 0, simply because the
initial error is zero. Thus, a large number of chain elements n
was used just to ‘lose track of the initial condition’, so to speak.
Certainly, a more thorough study would be possible using a large

Published 2016. This article is a U.S. Government work
and is in the public domain in the USA. Q. J. R. Meteorol. Soc. 142: 2505–2527 (2016)



2518 P. M. Norris and A. M. da Silva

120

100

80

60

40

20

0

–20
0.2 0.4 0.6 0.8 1.00.0

120

100

80

60

40

20

0

–20
0.2 0.4 0.6 0.8 1.00.0

�

f t

120

100

80

60

40

20

0

–20
0.2 0.4 0.6 0.8 1.00.0

250

200

150

100

50

–50

0

–100
0.2 0.4 0.6 0.8 1.00.0

250

200

150

100

50

–50

0

–100
0.2 0.4 0.6 0.8 1.00.0

PL

f t

250

200

150

100

50

–50

0

–100
0.2 0.4 0.6 0.8 1.00.0

2.0

1.5

1.0

0.5

0.0

–0.5
0.2 0.4 0.6 0.8 1.00.0

2.0

1.5

1.0

0.5

0.0

–0.5
0.2 0.4 0.6 0.8 1.00.0

SH

f t

2.0

1.5

1.0

0.5

0.0

–0.5
0.2 0.4 0.6 0.8 1.00.0

200

150

100

50

0

–50
0.2 0.4 0.6 0.8 1.00.0

200

150

100

50

0

–50
0.2 0.4 0.6 0.8 1.00.0

�H

f t

200

150

100

50

0

–50
0.2 0.4 0.6 0.8 1.00.0

0.5

0.0

–0.5

–1.0

–1.5

–2.0

–2.5

–3.0
0.2 0.4 0.6 0.8 1.00.0

0.5

0.0

–0.5

–1.0

–1.5

–2.0

–2.5

–3.0
0.2 0.4 0.6 0.8 1.00.0

S̄

f t

0.5

0.0

–0.5

–1.0

–1.5

–2.0

–2.5

–3.0
0.2 0.4 0.6 0.8 1.00.0

%
 B

ia
s

%
 B

ia
s

%
 B

ia
s

(a)

(b)

(c)

Figure 4. For each row, the percentage biases of the maximum a posteriori (MAP) values of five parameters (S̄, �, PL, SH and θH) from their truth values, as a
function of true cloud fraction (f t, for eight different truth triangles). The solid circles show the median and the vertical lines the interquartile range, over 90 cases (ten
observable realizations for each truth triangle and nine different initial triangles). No prior was used. (a) Top row: the exact analytic triangular likelihood model. The
first six f t correspond to truth triangles with modes St∗ ≤ 1 and have large biases in PL and �, since these triangles suffer from the identifiability problem discussed
in the text. The biases of the parameters SH and θH not affected by this identifiability issue are more acceptable. Note the generally smaller biases for large cloud
fractions – these show the value of near-full sampling of the truth triangles by cloudy observations and suggest the potential benefit of adding vapour observations in
partially cloudy cases. (b) Middle row: the approximate KDE-based likelihood with Nsim = N•max = 64. (c) Bottom row: same, but with Nsim = N•max = 128. Please
refer to the text in section 3.1 for a discussion of the analytic versus KDE comparison.
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Figure 5. As for Figure 4, but for the analytic likelihood only and for parameters SH and θH (rows) and different numbers of observations N (columns). These N are
the approximate numbers of pixels in a 1/4◦ gridbox for 5 km, 1 km and 500 m pixels, respectively. Clearly, increasing the number of observations reduces both the
median and interquartile range bias, especially between the 5 and 1 km resolutions.

randomized ensemble of truth/initial-condition triangles with
variable PL and � as well as S̄. However, then the issue becomes
selecting a representative distribution of these triangles, since that
distribution will vary with latitude, synoptic condition, height
in the boundary layer/free atmosphere, etc. Instead, we defer
any further testing to Part 2 of this series, where we investigate
the behaviour of the full gridcolumn Monte Carlo algorithm,

assimilating actual MODIS cloud data and with contemporaneous
backgrounds from a GEOS-5 analysis.

4. Summary and discussion

This completes the essential description of the method of
Monte Carlo Bayesian cloud data assimilation we are using.

Published 2016. This article is a U.S. Government work
and is in the public domain in the USA. Q. J. R. Meteorol. Soc. 142: 2505–2527 (2016)



Bayesian Inference on Sub-gridcolumn Moisture Variability 2519

The method was designed with the goal of addressing several
common problems in cloud data assimilation: (i) the mismatch
between the frequently small scales of cloud variability and
typical GCM-gridcolumn footprints is handled by a detailed
sub-gridcolumn model of moisture variability, including layer
moisture PDFs and vertical coupling of the PDFs using a
Gaussian copula model; (ii) the strong nonlinearities present
in cloud processes are addressed using a nonlinear, non-gradient
parameter space exploration method, Markov chain Monte Carlo
(MCMC) Bayesian inference. In particular, a key problem is
that a subsaturated background state cannot produce clouds
via any small equilibrium perturbation to moisture, but the
MCMC approach allows equilibrium jumps into regions of
non-zero cloud probability. Another advantage of the MCMC
Bayesian approach is that it characterizes the a posteriori PDF of
control parameters, thereby providing error estimates for the new
analyzed state.

The ultimate goal of this work is to produce a fully cycling
data assimilation system, one in which the model total water
PDF parameters are re-initialized with the values coming from
the ‘cloud analysis’, with the GCM producing a first guess for
the next cloud analysis. To achieve this goal, we have structured
the project with two distinct milestones: (i) development and
assessment of the ‘cloud analysis’ step by means of MCMC
and (ii) update of the PDF scheme in GEOS-5 to provide the
time evolution of the triangular PDF parameters and to use
the triangular PDF and subcolumn generation consistently in the
radiation parametrization and throughout GEOS-5. This article
focuses on milestone (i). Moreover, the improved moisture/cloud
state afforded by the MCMC algorithm is intended to provide
a better background for the hybrid ensemble/4D-Var algorithms
in GEOS-5, as well as to assist in the development of
proper observation operators for cloudy radiances (taking into
consideration cloud overlapping and subgrid variability).

For computational feasibility, we have stayed away from a
multivariate cloud analysis involving wind–mass coupling in the
MCMC algorithm. Having obtained mass analysis increments, the
corresponding wind increments could in principle be generated
by using the balance operators in our hybrid grid-point statistical
interpolation (GSI) system or relegated altogether to the full
meteorological analysis. The tacit goal of our approach is to
extract cloud information from the wealth of visible and IR
sensors as an intermediate step and to use this information to
constrain better the assimilation of IR and microwave cloudy
radiances in the main meteorological data assimilation system.
What we present here is an incremental step in this direction.

The characterization of observation error and its impact on
the performance of our algorithm is also an important aspect
that deserves in-depth consideration but has not been addressed
in this article. We have recently built a detailed MODIS Cloud
Retrieval Simulator (Wind et al., 2013), where a full spectrum of
MODIS Level 1 radiances is simulated from subcolumns sampled
from triangular PDFs of total water (basically the gridcolumn
statistical model of this study) by detailed scattering calculations.
These radiances are then fed to the operational MODIS cloud
retrieval suite. Besides evaluating cloud retrieval accuracy under
a variety of scenarios, this device will allow us to characterize the
proper averaging kernels and improve the specification of forward
operator error for our cloud assimilation algorithm. Furthermore,
these synthetic retrievals can be input to our cloud assimilation
algorithm to assess its ability to recover the triangular PDF
parameters that were specified in the front end of this simulation
chain. This OSSE activity is a project in itself and is beyond the
scope of this article.

In section 3, we provided an illustrative testing of the Bayesian
MCMC method in a simple one-layer context. These tests
illustrated the basic success of the method in reconstructing
reasonable analysis triangles using synthetic censored condensate
observations, even starting from distant initial conditions with
low or zero posterior probability. The testing also revealed some

identifiability problems for certain cloudiness regimes, although
these problems are expected to disappear in multi-layer cases
where multiple triangles are combined with a realistic degree of
vertical decorrelation. Discussion of the performance of the new
method in the full multi-layered context is presented in Part 2,
where the method is validated in various ways and its sensitivity
to numerous algorithmic and physical parameters is examined.

Appendix A, which follows, deals with important details of
the skewed triangle PDF that we use for layer total moisture
marginals and, in particular, some non-trivial details associated
with initialization of the PDFs from typical GCM gridbox mean
variables. Appendices B and C present technical aspects of the
all-sky likelihood evaluation and the forward modelling of cloud-
top pressure and brightness temperature. Finally, Appendix D
provides a detailed mathematical analysis of the perfect sampling
solution to the one-layer test cases of section 3.
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Appendices

Appendix A: The skewed triangle distribution

Key results are presented below for the skewed triangular
distribution. Only the most important derivation details are
included. Further details can be obtained from the authors.

A1. Basics

Consider a skewed triangular PDF in a variable S as follows:

pS(s) = 2

�

⎧⎪⎪⎨
⎪⎪⎩

0, s ≤ SL,
(s − SL)/�L, SL ≤ s ≤ S∗,
(SH − s)/�H, S∗ ≤ s ≤ SH,
0, s ≥ SH,

(A1)

where �L ≡ S∗ − SL > 0, �H ≡ SH − S∗ > 0 and � ≡ �L +
�H = SH − SL. The triangle has a base [SL, SH] of length �, a
mode at S∗, a height of 2/� and unit area as required. The area of
the lower section (below S∗) is PL ≡ �L/� ∈ (0, 1) and the area
of the upper section (above S∗) is PH ≡ �H/� = 1 − PL. The
CDF is

PS(s) =
∫ s

−∞
pS(x) dx

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, s ≤ SL,

PL

(
s−SL
�L

)2
, SL ≤ s ≤ S∗,

1 − PH

(
SH−s
�H

)2
, S∗ ≤ s ≤ SH,

1, s ≥ SH.

(A2)

Therefore, a simple way to generate a random sample S from the
distribution is as follows: (i) generate a uniform random number
U on [0, 1]; (ii) if U ≤ PL, S = SL + �L

√
U/PL; (iii) otherwise,

S = SH − �H

√
(1 − U)/PH.
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A2. Mean and variance

The mean is

S̄ =
∫ SH

SL

s pS(s) ds = S∗ + δ/3, (A3)

where δ ≡ �H − �L. The variance is

σ 2
S =

∫ SH

SL

(s − S̄)2 pS(s) ds = (
�2

G + δ2/3
)
/ 6, (A4)

where �G ≡ √
�L�H.

A3. Clear/cloudy decomposition

Consider a triangular distribution in the total saturation ratio
S ≡ qt/qs, with the usual definitions (Norris et al., 2008). Then,
under the standard bulk assumption (i.e. all water in excess of
saturation is assumed to be condensate), the clear (0 ≤ S ≤ 1)
fraction is just f ′ ≡ PS(1) and the cloudy (S > 1) fraction is
f ≡ 1 − f ′.

Let [S]◦ be the integral of S over the clear part of the gridbox:

[S]◦ ≡
∫ 1

0
s pS(s) ds = IS(1), (A5)

where

IS(s0) ≡
∫ s0

−∞
s pS(s) ds = S∗PS(s0)

+ 1

�

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, s0 ≤ SL,

s′20 (1 + 2s′0
3�L

) − �2
L/3, s0 ∈ [SL, S∗],

s′20 (1 − 2s′0
3�H

) − �2
L/3, s0 ∈ [S∗, SH],

�2
H/3 − �2

L/3, s0 ≥ SH,

(A6)

with s′0 ≡ s0 − S∗.
We ignore temperature variability, so qt is just S scaled

by a constant qs. The clear portion of the vapour integral
is then just [qv]◦ = [S]◦qs, since qt = qv for S ≤ 1, and the
mean vapour content in the clear portion is q̂v◦ = [qv]◦/f ′. For
the cloudy portion, qv = qs and so the cloudy portion mean
vapour is just q̂v• = qs and the cloudy portion vapour integral
[qv]• = fqs. Finally, we have q̄t = S̄qs = [qv]◦ + [qv]• + [qc],
where [qc] = f q̂c is the gridbox condensate integral and q̂c is
the in-cloud mean condensate content.

A4. Initialization for partially cloudy gridboxes

Say we have a model with a prognostic set of variables {f , q̂v◦, q̂c}
for each gridbox. These variables may be simply derived from the
PDF of S using results from the previous section. Specifically,

f ′ = PS(1), f = 1 − f ′, q̂v◦ = [S]◦qs/f ′ (A7)

and

q̂c = [qc]/f = (S̄qs − [qv]◦ − [qv]•)/f

= qs(S̄ − [S]◦ − f )/f .
(A8)

But how about moving in the opposite direction: from {f , q̂v◦, q̂c}
to a unique PDF?

The clear (f = 0) and overcast (f = 1) cases are special and are
discussed in section 2.3.1 of the main text. For the clear case, q̂c

is undefined and there are many possible triangles with the same
q̂v◦ = q̄v. Similarly, for the overcast case, q̂v◦ is undefined and
there are many possible triangles with the same q̂c = q̄c. These
cases are therefore undetermined and require special treatment.

In this section, therefore, we consider only the partially cloudy
gridbox, which has 0 < f < 1 and SL < 1 < SH. In this case we
have three equations – the second and third parts of (A7) plus
(A8) –constrained by {f , q̂v◦, q̂c} and three unknowns {SL, S∗, SH}
or {S̄, �, PL}, so we hope to find a unique solution PDF. Consider
two subcases.

(a) S∗ ≥ 1: then, after some algebra, we must solve

f ′ = 1 − f = PL(1 − σL)2,

1 − q̂v◦/qs = �{−PLσL + P2
L/(3f ′)

− P2
Lσ

2
L (1 − 2σL/3)/f ′},

q̂c/qs = �{+PLσL + P2
H/(3f )

− P2
Lσ

2
L (1 − 2σL/3)/f },

(A9)

where σL ≡ (S∗ − 1)/�L ∈ [0, 1). Note that

Q ≡ f ′(q̂v◦/qs − 1) + f (q̂c/qs)

= � {PLσL + (1 − 2PL)/3} ,
(A10)

so, combining with the first two parts of (A9),

RL ≡ (1 − q̂v◦/qs)/(Qf ′)

= 1 − σL

f ′(3σL − 2) + (1 − σL)2
.

(A11)

This gives a quadratic equation in σL.
(b) S∗ ≤ 1: then, after some algebra, we must solve

f = 1 − f ′ = PH(1 − σH)2,

1 − q̂v◦/qs = �{+PHσH + P2
L/(3f ′)

− P2
Hσ 2

H(1 − 2σH/3)/f ′},
q̂c/qs = �{−PHσH + P2

H/(3f )

− P2
Hσ 2

H(1 − 2σH/3)/f },

(A12)

where σH ≡ (1 − S∗)/�H ∈ [0, 1). Note that

Q ≡ f ′(q̂v◦/qs − 1) + f (q̂c/qs)

= −� {PHσH + (1 − 2PH)/3} ,
(A13)

so, combining with the first and third parts of (A12),

RH ≡ −(q̂c/qs)/(Qf )

= 1 − σH

f (3σH − 2) + (1 − σH)2
.

(A14)

This gives a quadratic equation in σH.

If we introduce the placeholders {P , R, f, σ } to represent
{PH, RH, f , σH} for S∗ ≤ 1 and {PL, RL, f ′, σL} for S∗ ≥ 1, then
the first parts of equations (A9) and (A12) can be combined as

f = P(1 − σ )2, (A15)

while (A11) and (A14) also have the same form and can be
rewritten as

σ 2 + (3f − 2 + R−1)σ + (1 − 2f − R−1) = 0. (A16)

This equation can be solved for σL and σH (with f and R chosen
as above) and then PL and PH backed out from (A15). Then �

can be found via (A10) and (A13) and S∗ via the definitions of σL

and σH, respectively. Also, note that the definitions of Q in (A10)
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and (A13) are the same and, in fact, Q has a very simple form in
terms of the mean total saturation ratio S̄ = q̄t/qs, namely

Q = f ′(q̂v◦/qs − 1) + f (q̂c/qs)

= q̄v/qs − f − f ′ + q̄c/qs = S̄ − 1,
(A17)

since q̄c = q̂cf and q̄v = q̂v◦f ′ + qsf .
After some analysis, the only solution to (A16) for f ∈ (0, 1)

and σ ∈ [0, 1) and P ∈ (0, 1) is

σ = 1 − τ −
√

τ 2 − f, (A18)

where τ = f/2 · [(3 − f) + (1 − f)R], R = R for S∗ ≥ 1 and
R = R−1 for S∗ ≤ 1, and

R ≡ (q̂c/qs)/(1 − q̂v◦/qs). (A19)

Furthermore, (A18) is only valid for f ∈ (F−1(R), (1 + R)−1],
where

F−1(x) ≡ [
√

1 + 8/(x + 1) − 1]2/4, ∀ x > 0. (A20)

This means that f ∈ (F−1(1/R), 1/(1 + 1/R)] for S∗ ≤
1 and f ′ ∈ (F−1(R), 1/(1 + R)] for S∗ ≥ 1, or, alterna-
tively, f ∈ (flo, fmd] for S∗ ≤ 1 and f ∈ [fmd, fhi) for S∗ ≥ 1,
where

flo ≡ F−1(1/R),

fmd ≡ R/(1 + R) and

fhi ≡ 1 − F−1(R).

(A21)

For R = 1, these f ranges are (0.382, 0.5]S∗≤1 and
[0.5, 0.618)S∗≥1. Figure A1 shows a graphical illustration of the
solution space. Evidently, there is only a relatively small range
of f for which a skewed triangle PDF solution exists for a given
R. Note that (i) panels (b) and (c) use a scaled cloud fraction
f S ≡ (f − flo)/(fhi − flo) to expand out the behaviour of σ and
PL on (flo, fhi) and (ii) f = fmd(R) corresponds to S∗ = 1 and
therefore σ = 0 and P = f, i.e. PL = 1 − f .

A4.1. A reduced PL range

Rather than considering the full PL ∈ (0, 1) range, we consider
only a reduced range PL ∈ IδP ≡ [δP, 1 − δP], where δP ∈ (0, 0.5)
and typically δ2

P � 1. We use δP = 0.1 for the results in this
article. The reason is that PL,H → 0 represents extreme skewness
cases that are usually not found in nature. For example, the
region between the PL = 0.05 (dark blue) and PL = 0.95 (brown)
contours of Figure A1(c) indicates the subset of (R, f S) space for
the δP = 0.05 case. It is evident from the figure that the range
PL ∈ IδP will be confined to S∗ ≤ 1 for small enough R and
S∗ ≥ 1 for large enough R, with intermediate R including both
branches. To explore this, imagine Figure A1(c) replotted against
f not f S, since the latter is simply a scaling, dependent only on
R, to make visualization easier. A contour PL(R, f ) = p on this
figure will be denoted by the line fPL=p(R). Each such contour
crosses the magenta dashed line, representing the transition
fmd(R) = (1 + 1/R)−1 between S∗ ≤ 1 below and S∗ ≥ 1 above.
As noted earlier, on this line S∗ = 1 and therefore PL = 1 − f .
Consequently, the intersection of the contour p and the transition
line has f = 1 − p. Let the R coordinate at this intersection be
denoted R∗

PL=p. Then (1 + 1/R∗
PL=p)−1 = 1 − p or

R∗
PL=p = (1 − p)/p. (A22)

Note the symmetry R∗
PL=1−p = p/(1 − p) = 1/R∗

PL=p. Now,
letRhi(δP) ≡ R∗

PL=δP
= (1 − δP)/δP andRlo(δP) ≡ R∗

PL=1−δP
=

1/Rhi(δP). (For example, Rhi(0.2) = 0.8/0.2 = 4 and

Rlo(0.2) = 0.2/0.8 = 0.25, which can be verified in Figure A1(c)
as theR at the intersection of the transition line with the PL = 0.2
(blue) and 0.8 (red) contours, respectively.) Now, with this nota-
tion, it is clear from the figure that ifR ≤ Rlo(δP) then PL ∈ IδP is
confined to S∗ ≤ 1 and if R ≥ Rhi(δP) then PL ∈ IδP is confined
to S∗ ≥ 1, while for R ∈ (Rlo(δP),Rhi(δP)), PL ∈ IδP spans both
branches.

To proceed, consider the solution fP=p(R) that solves
P(R, f) = p ∈ (0, 1). This is a contour p of P(R, f) and is related
to the contours of PL(R, f S) in Figure A1(c). From this figure
and the definitions of f and R in the two S∗ branches, it is
clear that each P contour can be followed in decreasing R till it
intersects with the fmax(R) = (1 + R)−1 line, for which σ = 0
and thereforeP = f = (1 + R)−1. This gives a minimum possible
R at this intersection of Rmin(p) = (1 − p)/p. Using (A15) and
(A18) and its derivation details, it can be shown that P(R, f) = p
yields a monic trinomial in

√
f, with coefficients depending on p

and R, finally yielding

fP=p(R) = 4ψ(R)

× {cos[arccos(−X)/3] − cos[arccos(+X)/3]}2,
(A23)

where

ψ(R) ≡ (1 + R/3)/(1 + R),

X ≡ − κp/
√

ψ(R)

2(1 + R/3)
and

κp ≡ √
p + 1/

√
p.

(A24)

Finally, let us apply this to the reduced bounds on f , denoted
flo(δP) and fhi(δP), that result from confining PL to IδP . Clearly
these bounds fall within the outer bounds that apply for δP = 0,
namely the flo and fhi of (A21). Now, from our earlier analysis,

(1) If R ≤ Rlo(δP) then PL ∈ IδP is confined to S∗ ≤ 1 and so
flo(δP) = fP=1−δP (1/R) and fhi(δP) = fP=δP (1/R).

(2) If R ≥ Rhi(δP) then PL ∈ IδP is confined to S∗ ≥ 1 and so
flo(δP) = 1 − fP=δP (R) and fhi(δP) = 1 − fP=1−δP (R).

(3) If R ∈ (Rlo(δP),Rhi(δP)), then PL ∈ IδP spans both
branches and so flo(δP) = fP=1−δP (1/R) and fhi(δP) =
1 − fP=1−δP (R).

A4.2. Adjusting the range of f for constant q̄v and q̄c

Thus far in this section, we have obtained the criteria for
which a valid skewed triangle PDF may be diagnosed based on
specification of {f , q̂v◦, q̂c}. Specifically, equation (A18), together
with (A15) for PL and PH, (A10) and (A13) for � and the
definitions of σL and σH for S∗ lead to a full specification of
the diagnosed triangle for the partially cloudy case. For a given
q̂v◦ and q̂c, however, we have found that only a narrow range of
cloud fractions f , as detailed in (A21) and Figure A1, permit a
valid partially cloudy solution, namely one with σ ∈ [0, 1) and
PL ∈ (0, 1). If, in addition, we restrict PL to a more physical
range, say [δP, 1 − δP], then an even more restricted range of f is
required, as detailed in section A4.1.

How do we proceed if the cloud fraction f is outside this narrow
range? This can presumably happen if we are presented with an
f , by either observations or model-based simulations, for which
the underlying qt PDF is not a skewed triangle. One reasonable
strategy is to solve for cases with in-range f as above, but, for cases
with out-of-range f , to first clamp the f value to the respective
end value of the valid f range. However, this introduces another
problem: if we adjust the value of f while keeping the original q̂v◦
and q̂c fixed, then the gridbox means q̄v and q̄c will change and
these, at least in the case of model input, are more likely to be
reliable than q̂v◦ and q̂c. On the other hand, if we hold q̄v and q̄c

fixed and change f , then q̂v◦ and q̂c will change and therefore R
will change, which in turn will alter the acceptable f bounds.
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Figure A1. (a) The lower and upper bounds (flo, fhi) on cloud fraction (dashed) for a valid solution, as a function of R, and the transition fmd(R) (magenta
solid) between S∗ ≤ 1 below and S∗ ≥ 1 above, per (A21). (b) The σ solution from (A18) as a function of f and R. The vertical axis uses the normalized cloud
fraction f S ≡ (f − flo)/(fhi − flo). Contours are 0.05 (dark blue), 0.2 (blue), 0.4 (cyan) 0.6 (yellow), 0.8 (red) and 0.95 (brown). The magenta line again shows
S∗ = 1 �⇒ σ = 0. (c) The same, but for PL and with f S

md(R) as the magenta dashed line.

Using (A19) and q̂v◦/qs = (q̄v/qs − f )/(1 − f ),

R = Rm
(
f −1 − 1

) ≡ R(f ;Rm),

Rm ≡ q̄c/qs

1 − q̄v/qs
.

(A25)

This form emphasizes that R becomes a function of f if q̄v and q̄c

are to be held fixed, rather than q̂c and q̂v◦. Note that R(f ;Rm)
can be regarded as a contour of Rm in (R, f ) space.

Consider a case characterized by Rm and a cloud fraction f0.
We evaluate f 0

lo ≡ flo(R(f0;Rm); δP) and f 0
hi ≡ fhi(R(f0;Rm); δP)

using section A4.1 and say that f0 is outside [f 0
lo, f 0

hi]. First, consider
the case where f0 < f 0

lo. In (R, f ) space, as in Figure A1, this
corresponds to a point (R(f0;Rm), f0) falling below the contour
flo(R; δP) on which PL = δP. The goal is to increase f from f0,
following the contour R(f ;Rm) passing though the point, until
it intersects the contour flo(R; δP). The contour R(f ;Rm) has
decreasing R for increasing f and so moves up and to the left in
Figure A1(a). However, in the process of this move, the contour
flo(R; δP) moves down and to the left, towards decreasing flo. The
intersection point we seek therefore has f ∈ (f0, f 0

lo). Conversely,
for f0 > f 0

hi, we follow the contour R(f ;Rm) passing through
(R(f0;Rm), f0), decreasing in f and increasing in R, until it
intersects with the contour fhi(R; δP) on which PL = 1 − δP,
which has increasing fhi for increasing R. Thus, in this case, the
intersection point we seek has f ∈ (f 0

hi, f0).
In this way, we are able to bound an acceptable solution f for

an initially out-of-bounds f0. In practice, we solve the problem
numerically using a simple bisection algorithm. We start by
bisecting the appropriate f range above. Of course, we do not
know the solution f , but if the new point f1 is within a small
tolerance of the respective [f 1

lo, f 1
hi] end-point then we consider

the solution found. (Here, the ‘end-point’ is actually an f that
is 1% inside that range, near f 1

lo if f0 was initially too low and
near f 1

hi if f0 was initially too high; ‘small tolerance’ means 1%
of f 1

hi − f 1
lo.) If not within tolerance, we narrow the f bounds

and repeat for a new bisection point f2 of the updated bounds.
(The ‘narrowed bounds’ are f1 and the ‘end-point’ above and are
clipped so that the new range never falls outside the previous
range.) We continue this iteration until either a solution is found
or 100 iterations are performed. If a valid solution is not found
or if the solution has SL < 0 or SH > Smax, as discussed in the
next section, then we use the fallback solution presented in that
section. As a final note, this procedure seems to work well for f0

clipped to [0.001, 0.999] and for R(fn) clipped to [10−6, 106].

A4.3. Physical bounds on SL and SH

None of our analysis in section A4 has ensured the physical
constraint SL ≥ 0, preventing negative moisture, or the physically
reasonable bound constraint SH ≤ Smax, preventing excessive
moisture. An analytic treatment of these additional constraints
has thus far been too complicated to complete, so if these bounds
are violated we use the fallback solution of a triangle with base
[0, Smax], but adjusted to honour S̄, as per section A6.

A5. Attempted symmetric triangle solution

For clear or overcast gridbox, we employ a symmetric triangular
solution (PL = 0.5) with a prescribed width �0 (set to 0.4 for the
results in this article, unless otherwise specified). Together with
the mean S̄, which is the same as the mode S∗ for a symmetric
triangle, this specifies a unique triangular PDF. However, there
is an additional restriction, namely that the triangle must fall
wholly within a domain [S0, S1], which for clear gridboxes is
[0, 1] and for overcast gridboxes is [1, Smax], where Smax is some
reasonable upper bound on allowable total saturation ratio S.
(Note that the mean S̄ is required to fall in (S0, S1) for the
clear and overcast cases. The model S̄ is clipped to Smax if it
exceeds this.)

The base of this nominal symmetric triangle, [S̄ − �0/2, S̄ +
�0/2], should fit between the bounds S0 and S1. If not, one
of the following cases applies. For each of these cases, we insist
additionally on a PL in the reduced range [δP, 1 − δP], where
δP ∈ (0, 0.5), nominally 0.1 for the results in this article. The
cases are as follows.

(a) Both bounds S0 and S1 are violated, i.e. SL = S̄ − �0/2 <

S0 and SH = S̄ + �0/2 > S1. In this case. we abandon
the symmetry restriction and attempt to force the base to
exactly [S0, S1], if we can do so while still honouring the
mean S̄. We discuss this case in section A6.

(b) Only S0 is violated, i.e. SL = S̄ − �0/2 < S0 and SH =
S̄ + �0/2 ≤ S1. In this case, we increase SL to S0 while
holding �H ≡ SH − S∗ fixed at �0/2 and S̄ fixed at its
specified value. Note that, for a general triangular PDF,
from (A3),

S∗ = [3S̄ − SL − �H]/2. (A26)

Clearly, as SL is increased, S∗ and therefore SH must
decrease. This new triangle therefore falls wholly in [S0, S1].
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The new triangle has

PL = 3(S̄ − S0) − �0/2

3(S̄ − S0) + �0/2
< 1/2. (A27)

To ensure that PL ≥ δP requires

S̄ − S0 ≥ �0

6

1 + δP

1 − δP
. (A28)

If this is the case, then the new triangle is an acceptable
solution, with PL as above and

� = �0/2

1 − PL
. (A29)

If (A28) is violated, we select another new triangle with
SL = S0, PL = δP and S̄ as specified. Then

� = 3(S̄ − S0)

1 + δP
, (A30)

completes the specification. (Note that �H = (1 −
PL)� = 3(S̄ − S0)(1 − δP)/(1 + δP) < �0/2, since (A28)
is violated. Then, from (A26), SH = S∗ + �H = S̄ + [S̄ −
S0 + �H]/2 < S̄ + [S̄ − S0 + �0/2]/2. By the definition
of case (b), S̄ − S0 < �0/2, so SH < S̄ + �0/2 ≤ S1. This
ensures that this triangle has a base in [S0, S1], as required.)

(c) Only S1 is violated, i.e. SL = S̄ − �0/2 ≥ S0 and SH =
S̄ + �0/2 > S1. Then, by a very similar analysis to that in
case (b), first we try SH = S1, �L = �0/2 and S̄ as specified.
This triangle has

PH = 1 − PL = 3(S1 − S̄) − �0/2

3(S1 − S̄) + �0/2
< 1/2. (A31)

To ensure that PH ≥ δP requires

S1 − S̄ ≥ �0

6

1 + δP

1 − δP
. (A32)

If this is the case, then the new triangle is an acceptable
solution, with PH as above and

� = �0/2

1 − PH
. (A33)

If (A32) is violated, we use the triangle with SH = S1,
PH = δP and S̄ as specified. Then

� = 3(S1 − S̄)

1 + δP
, (A34)

completes the specification.

A6. End-points specified triangle solution

In this case, we are provided with a range (S0, S1) containing S̄
and want to choose a triangle with that exact base and PL in
the reduced range [δP, 1 − δP], δP ∈ (0, 1/2). The problem is that
only such triangles with

S̄ ∈ [S0 + �∗/3, S1 − �∗/3], (A35)

where �∗ ≡ (S1 − S0)(1 + δP), are possible, since the mean
simply cannot take on values too close to the end-points. For
S̄ in this range, the triangle with base (S0, S1) and mean S̄ is
acceptable and has � = S1 − S0 and PL = (S∗ − S0)/�, where
S∗ = 3S̄ − (S0 + S1). For S̄ below the lower limit, we reduce SH

while holding SL = S0, PL = δP and S̄ at the specified value. This
gives the reduced base

� = 3(S̄ − S0)

1 + δP
. (A36)

For S̄ above the upper limit, we increase SL while holding SH = S1,
PH = δP and S̄ at the specified value. This gives the reduced base

� = 3(S1 − S̄)

1 + δP
. (A37)

Appendix B: Bayes inference for clear and cloudy pixels

B1. Form of the likelihood

This Appendix is a justification of the form of the pixel likelihood
p̂(ŷ|α) introduced in section 2.6. Say α is a gridcolumn state vector
and y is a vector of gridcolumn observations (comprising multiple
pixels and multiple properties per pixel). An underlined version
of these or any other quantity will denote a random variable in
the quantity. Then, in terms of conditional probabilities,

P(α ∈ Rα ∩ y ∈ Ry)

= P(α ∈ Rα|y ∈ Ry) P(y ∈ Ry)

= P(y ∈ Ry|α ∈ Rα) P(α ∈ Rα)

�⇒ p(α|y)��dα =
P(y ∈ Ry|α) p(α)��dα

P(y ∈ Ry)
,

(B1)

where Rα is an infinitesimal region of volume dα containing α
and similarly for y and where p(α|y) and p(α) are probability
densities with respect to α.

For Bayesian inference on α, we may ignore the denominator
(which is invariant to α), yielding

p(α|y) ∝ P(y ∈ Ry|α) p(α). (B2)

This is similar to (1), but P(y ∈ Ry|α) is a pure probability, not a
density. As in section 2.6, the observations are decomposed into
i.i.d. pixels ŷ1, . . . , ŷN and so

P(y ∈ Ry|α) =
N∏

n=1

P̂(ŷ ∈ Rŷn
|α), (B3)

where P̂(·|α) is the common per pixel likelihood. For each clear
pixel, ŷn is identically zero and P̂(ŷ ∈ R0|α) is P◦(α), the finite
likelihood of a clear pixel. This is true no matter how small
R0 becomes, since clear pixels have ŷn exactly zero. For cloudy
pixels, we can write P̂(ŷ ∈ Rŷn

|α) = p̂(ŷn|α) dŷn and the term
dŷn cancels with an identical term in the corresponding ignored
denominator term P̂(ŷ ∈ Rŷn

). In practice, for cloudy pixels, we

write p̂(ŷn|α) = P•(α) p̂•(ŷn|α), where P•(α) = 1 − P◦(α) is the
likelihood of a cloudy pixel at α and p̂•(ŷ|α) is a likelihood density
for cloudy pixels only, so that its integral over all cloudy ŷ is one.

In summary, we may use (B2) and (B3), but for P̂(ŷ ∈ Rŷn
|α)

substituting P◦(α) for clear pixels and P•(α) p̂•(ŷn|α) for cloudy
pixels.

B2. Technical details of the likelihood evaluation

The algorithmic evaluation of the total log-likelihoodL of (6) has
several important shortcuts. These details are of a more technical
nature and so were not included in the main description in
section 2.6. The reader should read that section before proceeding.

(1) First, the clear term L◦ is evaluated per (7). If there are
no clear pixels (N◦ = 0), then L◦ = 0. If there are clear
pixels (N◦ > 0) but P◦(α) = 0, indicating zero probability
of such an event, then evaluation of L is terminated and
zero probability is returned for (1).

(2) Next, the cloudy term L• is evaluated. If there are no
cloudy pixels (N• = 0), then L• = 0. If there are cloudy
pixels (N• > 0), then the first line N• ln P•(α) of (9) is
evaluated. If P•(α) = 0, then N• > 0 is impossible and so
again the evaluation ofL is terminated and zero probability
is returned for (1).
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(3) Next the second line of (9), involving pc-cloudy pixels,
is evaluated. If there are no such pixels (N•pc = 0), then
the second line is zero. If N•pc > 0 but P(pc|•, α) = 0, we
again have an impossibility and zero probability is returned.
However, if P(pc|•, α) > 0, we evaluate N•pc ln P(pc|•, α)
and move on to the summation term involving p̂•pc , which
is discussed separately below.

(4) Finally, the last line of (9), involving Tb-cloudy pixels, is
evaluated in a completely analogous manner.

Now, regarding the summation term

∑
n∈•pc

ln p̂•pc ((ln τ , pc)n|α),

because the evaluation of p̂•pc can be somewhat expensive and
because the number of pixels per gridcolumn can be large (≈ 625
1 km pixels for a 1/4◦ model resolution), if N•pc exceeds some
limit N•max then a random subset of n ∈ •pc, comprising only
N•max elements, is used instead and the resulting summation
term is scaled up by N•pc/N•max. Currently, we set N•max equal
to the number of simulated subcolumns (per gridcolumn), Nsim.
An Nsim value of 64 is typical and gives approximately 1–2%
accuracy in the simulated cloud fraction. We will address the
sensitivity to these parameters in Part 2.

With these algorithmic details and many other computational
efficiency improvements, the Monte Carlo Bayesian CDA
algorithm described herein has a throughput of about 4 months
per day for hourly Aqua MODIS assimilation on a 1/2◦ model
grid using 32 Westmere nodes (2.8 GHz clock speed, 12 cores per
node) on the Discover cluster at the NASA Center for Climate
Simulation (NCCS) at the NASA Goddard Space Flight Center.

B3. Details of the KDE evaluation

Our default method for evaluating the likelihood p̂•pc ((ln τ , pc)|α)
from the subcolumn-generated cloudy pc-available pairs {(τ , pc)}
is a kernel density estimate (KDE) with Gaussian kernels, as
introduced in section 2.6. This KDE can represent complex,
multimodal distributions and is our default method.

The method constructs the PDF from the normalized sum of
a set of 2D Gaussians, one centred at each simulated point in
{(ln τ , pc)}. The covariance of each of these Gaussians is fixed
and equal to the sample covariance of the whole of {(ln τ , pc)}
multiplied by the square of a factor fS = (1/Nsim•pc

)1/(d+4), called
the Scott’s factor, where d is the number of dimensions, here two.

Note that if the gridcolumn is a night-time one, τ is not
available. In this case, the 2D p̂•pc ((ln τ , pc)|α) above reduces to a
1D p̂•pc (pc|α) and a 1D KDE is used instead.

Appendix C: Forward modelling of pc and Tb

C1. CO2-slicing cloud-top pressure pc

The CO2-slicing cloud-top pressure pc is forward modelled using
the same simple approximation used by the COSP MODIS
simulator (Bodas-Salcedo et al., 2011), namely

pc = 1

�τ

∫ �τ

0
p dτ , (C1)

where �τ = min(�τCO2 , τ ) and �τCO2 = 1.0 · μsat is an effective
nadir-adjusted optical depth to which the MODIS CO2-slicing
algorithm is considered to see into a cloud. To evaluate pc for
the gridcolumn’s vertical grid, we assume that pressure and COT
are linearly related in each layer, which is physically reasonable
(at least if we assume that moisture properties are approximately
vertically uniform within a layer and, especially, that a cloud fills
the entire vertical extent of each layer in which it occurs, both of

which are reasonable discretization assumptions for thin layers).
Then

pc ≈ 1

�τ

⎛
⎝K∗−1∑

k=1

p̄kτk + p̄∗τ ∗

⎞
⎠ , (C2)

where K∗ is the first layer, counting from the top (k = 1), for

which the cumulative COT,
∑K∗

k=1 τk ≥ �τ and p̄k is the mean of
the edge pressures of layer k. For the final layer K∗, τ ∗ is only that
portion of τK∗ needed to bring the cumulative COT up to �τ

and p̄∗ is the mean of the edge pressures of this reduced layer (the
final end-point pressure evaluated, remembering that pressure is
linear with COT in the layer).

C2. Brightness temperature Tb

Tb is evaluated with an IR-only version of the all-sky brightness
temperature calculation used in the COSP ICARUS algorithm,
as in the Appendix of Klein and Jakob (1999), hereafter KJ. The
details are not particularly important to this article, but here is a
brief outline: the cloud infrared emissivity is calculated as

εcld
k = 1 − exp(−τ IR

k ),

where τ IR
k is the COT at 10.5 μm and is calculated analogously

to visible τk, but using the IR rather than visible COT
routine of the GEOS-5 code. εcld

k is combined with a water-
vapour continuum emissivity εwv

k to produce a total emissivity

εk = 1 − (1 − εwv
k )(1 − εcld

k ) and this is used with KJ’s equations
(A4), (A5) and (A7) to produce a TOA radiance I. Then (A5)
is inverted, with I replacing KJ’s f {Tk}, to extract the brightness
temperature Tb.

Appendix D: A mathematical analysis of Bayesian inference for
a simple skewed triangle model

Consider a continuous random variable S with a probability
density function pS(s). Say that S is ‘observed’ in some way
to yield an observation Y(S). Say that the observation is left-
censored, in the sense that S at and below some threshold will
yield a particular minimum value of Y . For concreteness, we
will consider the observation operator Y = max(S − 1, 0), so
that, for S ≤ 1, Y = 0 and for S > 1, Y = S − 1 > 0. This is a
condensate-like observation operator.

Say we make N independent observations y1, . . . , yN of Y . Say
N0 of these observations have Y = 0, N1 have Y ∈ (0, δ], N2 have
Y ∈ (δ, 2δ], etc., where δ is a very small Y interval, approaching
zero. Say we do not record any more information about the
observations other than the ordered set N = {N0, N1, N2, . . . },
most elements of which are zero for finite N. However,∑∞

i=0 Ni = N always.
Let Pr(C) denote the probability of some condition C. Then,

because of the independence of the observations,

Pr(N ) → PN0
0

∞∏
i=1

(
pY (y(i)) × δ

)Ni
as δ → 0, (D1)

where

(1) P0 = Pr(Y = 0) = Pr(S ≤ 1) = PS(1) is the probability of
being censored to Y = 0, with PS being the CDF of S;

(2) pY (y) is the PDF of Y , here evaluated for y > 0, for which
pY (y) = pS(y + 1); and

(3) y(i) is any y in the ith delta bin (i.e. the bin with Ni

observations).

Say we parametrize pS(s;α) by a real vector α of parameters.
Within the Bayesian framework, the parameter state α is itself a
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realization of a random variable A, with a prior PDF pA(α). Let
dV denote some infinitesimal volume in A phase space containing
α. Bayes’ Theorem states that

Pr(A∈dV ∩ N ) = Pr(A∈dV |N ) Pr(N )

= Pr(N |A∈dV) Pr(A∈dV),
(D2)

yielding

pA(α|N )��dV Pr(N ) = Pr(N |A∈dV) pA(α)��dV , (D3)

and hence

pA(α|N ) = Pr(N |α) pA(α)

Pr(N )

= (PS(1;α))N0
∏∞

i=1

(
pS(y(i)+1;α)

)Ni pA(α)

(PS(1))N0
∏∞

i=1

(
pS(y(i)+1)

)Ni
.

(D4)

Therefore, up to a constant independent of α, we may write

ln pA(α|N ) = N0 ln PS(1;α)

+
∞∑

i=1

Ni ln pS(y(i)+1;α) + ln pA(α).
(D5)

Henceforth, we will take pS(s) as the simple skewed triangle
model p�(s), as described in section 2.2, Figure 1 and (A1).
There are various sets of parameter triplets α that can be used to
specify the skewed triangular PDF fully. One example would be
α = (S∗, �, PL), specifying the the modal S, the triangle base and
the S ≤ S∗ probability mass, respectively.

In any case, the skewed triangular PDF and CDF, from (A1)
and (A2), can be written as follows:

p�(s;α) =
⎧⎨
⎩

2 (s − SL)/θL, s ∈ [SL, S∗],
2 (SH − s)/θH, s ∈ [S∗, SH],
0, otherwise

(D6)

and

P�(s;α) =

⎧⎪⎪⎨
⎪⎪⎩

0, s ≤ SL,
(s − SL)2/θL, s ∈ [SL, S∗],
1 − (SH − s)2/θH, s ∈ [S∗, SH],
1, s ≥ SH,

(D7)

where θL = PL�
2 and θH = PH�2. We call f ′(α) = P�(1;α) the

left-censored fraction or ‘clear’ fraction.
Let us say our observations N are sourced from a ‘truth’

triangle p�(S;αt), where the superscript ‘t’ is short for ‘truth’.
We seek an analytic maximum a posteriori (MAP) solution α̂ of
∇α ln pA(α|N ) = 0. Our goal is to see how close α̂ is to the αt of
the underlying truth.

We will consider the case N → ∞ of a perfectly sampled truth
triangle. This allows us to convert the above sum in (D5) to an
integral, yielding

J∞ ≡ lim
N→∞

N−1 ln pA(α|αt) = f ′(αt) ln f ′(α)

+
∫ ∞

1
pS(s;αt) ln pS(s;α) ds,

(D8)

where we have dropped the prior term, since it is rendered
insignificant in the presence of a perfectly sampled truth. The
MAP solution α̂ is the α that maximizes J∞.

D1. Truth is clear

If the truth is wholly clear, i.e. f ′(αt) = 1, then the truth triangle
has no overlap with s ≥ 1 and so the integral term is zero. This
leaves J∞ = ln f ′(α), which is maximized at zero (i.e. f ′(α) = 1)
for any triangle α that is also wholly clear. That is the limit of the
information available from the observations in this case – namely
that the truth is wholly clear.

D2. Truth is partially cloudy with St∗ ≤ 1

Next, say the truth is partially cloudy, with f ′(αt) ∈ [Pt
L, 1) ⊂

(0, 1), which means that St∗ ≤ 1 and the cloudy portion of the
truth triangle is wholly within the falling upper section of the
triangle. Then

J∞ = [1 − (St
H − 1)2/θ t

H] ln f ′(α)

+ 2

θ t
H

∫ St
H

1
(St

H − s) ln pS(s;α) ds.
(D9)

Clearly, to avoid J∞ = −∞, i.e. zero a posteriori probability, we
require f ′(α) > 0 (α not overcast) and pS(s;α) > 0 on s ∈ (1, St

H),
so that SH ≥ St

H > 1 (which also prohibits f ′(α) = 1, the clear
case).

D2.1. S∗ ≤ 1

First, consider the case where S∗ ≤ 1 also, so that f ′(α) ∈ [PL, 1) ⊂
(0, 1) and the cloudy portion is also in the upper section of triangle
α. Then

J∞ =
[

1 − (St
H − 1)2

θ t
H

]
ln

[
1 − (SH − 1)2

θH

]

+
∫ St

H

1

[
2 (St

H − s)

θ t
H

]
ln

[
2 (SH − s)

θH

]
ds.

(D10)

Immediately, we can see there is also an identifiability problem in
this case, because this J∞ is parametrized by only two (non-truth)
parameters, SH and θH = PH�2, rather than three. This means
that any α that has the same SH and θH also has the same J∞.
This means that there is a family of points in α space, a contour
surface in J∞, given by SH and PH�2 equal to constants. This
not only applies in general, but also to the specific values of SH

and θH that maximize J∞. In other words, the MAP solution α̂ is
not unique but refers to the contour surface with this maximum
J∞, as above. The cause of this problem is that the PDF is purely
linear for this case, thereby involving only two rather than three
independent parameters. In retrospect, it may have been better
to have used a smooth three-parameter PDF, such as the GEV
distribution used in Norris et al. (2008).

We proceed to evaluate (D10) and its MAP solution. We
do so on the domain SH ≥ St

H > 1, as required earlier for
J∞ > −∞. The condition S∗ ≤ 1, i.e. f ′(α) ∈ [PL, 1) ⊂ (0, 1),
ensures f ′(α) > 0, also required for J∞ > −∞. After some
algebra,

J∞ =
[

1 − (St
H − 1)2

θ t
H

]
ln

[
1 − (SH − 1)2

θH

]

+ (St
H − 1)2

θ t
H

ln
2

θH
+ 1

2θ t
H

×
{

(SH − 1) [4(SH − St
H) − (SH − 1)

+ 2((SH − 1) − 2(SH − St
H)) ln(SH − 1)]

− (SH − St
H)2 [3 − 2 ln(SH − St

H)]
}
.

(D11)

As discussed earlier, we may regard J∞ as a function of SH and
θH. The partial derivatives are as follows:

∂J∞
∂θH

= (St
H − 1)2

θ t
HθH

×
[

θ t
H − (St

H − 1)2

θH − (SH − 1)2
· (SH − 1)2

(St
H − 1)2

− 1

] (D12)
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and

∂J∞
∂SH

= − 2(SH − 1)

θ t
H

[
θ t

H − (St
H − 1)2

θH − (SH − 1)2
− 1

− SH − St
H

SH − 1

(
ln

SH − St
H

SH − 1
− 1

)]
.

(D13)

Zeroing the partial derivative with respect to θH yields

θ t
H

θH
=

(
St

H − 1

SH − 1

)2

. (D14)

Similarly, zeroing the partial derivative with respect to SH yields

θ t
H − (St

H − 1)2

θH − (SH − 1)2
− 1

= SH − St
H

SH − 1

(
ln

SH − St
H

SH − 1
− 1

)
.

(D15)

One obvious solution of these equations is SH = St
H and θH = θ t

H
(note that the right-hand side of the last equation goes to zero
as SH → St

H). Are there any other solutions? Well, substituting
(D14) into (D15) and assuming SH �= St

H yields

y ≡ x + ln(1 − x) = 0, x = St
H − 1

SH − 1
∈ (0, 1). (D16)

It is simple to show this has no solution on the required x ∈ (0, 1).
Thus, the only critical points of J∞ are on the boundary SH = St

H.
On this boundary, it is easy to verify that not only is θH = θ t

H the
sole critical point, but it is in fact a global maximum on SH = St

H.
There is an intricacy we have thus far ignored: (D10) and the

following equations are only valid for S∗ ≤ 1. This puts a lower
limit on θH for a given SH, but a limit that cannot be delineated
in terms of SH only; rather, it requires another parameter, let us
say PH. Specifically, S∗ ≤ 1 �⇒ SH − √

PHθH ≤ 1 �⇒ θH ≥
(SH − 1)2/PH ≡ θmin

H (SH, PH). In addition, we also require (on
physical grounds) that SL ≥ 0 �⇒ θH ≤ PHS2

H ≡ θmax
H (SH, PH).

(Note that θmin
H < θmax

H ⇐⇒ SH < 1/(1 − PH) ∈ [1.11, 10],
since, in practice, we use PH ∈ [0.1, 0.9] ≡ [Pmin

H , Pmax
H ]. How-

ever, since we also use SH ≤ Smax = 1.1, at least for water clouds,
then [θmin

H , θmax
H ] is a valid interval without any further restric-

tions. We will not discuss the ice case here.)
Therefore, we can actually think of J∞ as a function on a closed

bounded domain in the three-dimensional (SH, θH, PH) space.
While ∂J∞/∂PH = 0, the PH is important in setting the domain,
namely θH ∈ [θmin

H , θmax
H ], as above. The domain in the other

dimensions is SH ∈ [St
H, Smax] and PH ∈ [Pmin

H , Pmax
H ].

Now, what our earlier analysis showed was firstly that, for
SH > St

H, there are no critical points and hence no extrema
of J∞ in the interior of the above domain. Thus, the global
maximum of J∞ must lie on the boundaries of the domain.
Secondly, we showed that there was a global maximum on the
boundary SH = St

H at θH = θ t
H. This is a candidate for the global

maximum of the whole domain, if indeed θ t
H ∈ [θmin

H , θmax
H ] for

SH = St
H and for at least some PH ∈ [Pmin

H , Pmax
H ]. We can be

sure this is at least true for PH = Pt
H, since then the test triangle

is identical with the truth triangle, which is certainly in the
domain. To find what other PH are acceptable, we must evaluate
(St

H − 1)2/PH ≤ θ t
H ≤ PHSt2

H ⇐⇒ PH ≥ P∗
H, where

P∗
H ≡ max[(St

H − 1)2/θ t
H, θ t

H/St2
H]. (D17)

Hence, PH ∈ [max(Pmin
H , P∗

H), Pmax
H ] is the range for which

SH = St
H and θH = θ t

H is a possible global maximum. (Again,
we do not have to worry that the above range is empty, i.e. that
P∗

H > Pmax
H , since know that at least Pt

H is an included point.)

Actually, to be sure that SH = St
H and θH = θ t

H is the global
maximum, for the above PH range, we must see if any other point
on the other boundaries exceeds its J∞ value. We will not do this
for two reasons: firstly it will be tedious and secondly it seems
eminently reasonable to us that the maximum J∞ for infinite
observations should be attainted when the test triangle is in fact
the same as the truth triangle.

So, in conclusion, the MAP solution for this particular case
(namely a partially cloudy truth with St∗ ≤ 1 and testing for
Ŝ∗ ≤ 1 also) is given by

ŜH = St
H and θ̂H = θ t

H, (D18)

and P̂H ∈ [max(Pmin
H , P∗

H), Pmax
H ], an interval that includes Pt

H.
This means that the MAP solution is not a unique triangle, but
the family of triangles with the same upper bound ŜH as the truth,
with P̂H�̂2 equal to that of the truth and with P̂H equal to any
value in the range above.

The actual value of J∞ at this solution is

Ĵ∞ =
[

1 − (St
H − 1)2

θ t
H

]
ln

[
1 − (St

H − 1)2

θ t
H

]

+ (St
H − 1)2

θ t
H

[
ln

2(St
H − 1)

θ t
H

− 1

2

]
.

(D19)

D2.2. S∗ > 1

This case, where the test triangle has some cloud in the rising
section as well, does not yield a MAP solution. Please contact the
authors for the calculations, if required.

D3. Conclusions

We will terminate our analysis here. We will not examine the
more complex case where St∗ > 1. In this case, we expect that
an identifiability problem will not occur, since both sides of
the triangle and therefore all three parameters come into play.
Rather, it is enough for us to realize that a unique MAP solution
is not possible for truth triangles that have cloud only in the falling
upper leg of the PDF.
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